8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The effects of cultivation patterns and nitrogen levels on fertility and bacterial community characteristics of surface and subsurface soil

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The cropping system affects the physicochemical property and microbial community of paddy soil. Previous research mostly focused on the study of soil 0–20 cm underground. However, there may be difference in the laws of nutrient and microorganism distribution at different depths of arable soil. In surface (0–10 cm) and subsurface (10–20 cm) soil, a comparative analysis including soil nutrients, enzymes, and bacterial diversity was carried out between the organic and conventional cultivation patterns, low and high nitrogen levels. Analysis results suggested that under the organic farming pattern, the contents of total nitrogen (TN), alkali-hydrolyzable nitrogen (AN), available phosphorus (AP), and soil organic matter (SOM) as well as alkaline phosphatase and sucrose activity increased in surface soil, but the SOM concentration and urease activity decreased in subsurface soil. A moderate reduction of nitrogen applied to soil could enhance soil enzyme activity. It was demonstrated by α diversity indices that high nitrogen levels remarkably undermined soil bacterial richness and diversity. Venn diagrams and NMDS analysis manifested great difference in bacterial communities and an apparent clustering tendency under different treatment conditions. Species composition analysis indicated that the total relative abundance of Proteobacteria, Acidobacteria, and Chloroflexi retained stable in paddy soil. LEfSe results revealed that a low nitrogen organic treatment could elevate the relative abundance of Acidobacteria in surface soil and Nitrosomonadaceae in subsurface soil, thereby tremendously optimizing the community structure. Moreover, Spearman’s correlation analysis was also performed, which proved the significant correlation of diversity with enzyme activity and AN concentration. Additionally, redundancy analysis disclosed that the Acidobacteria abundance in surface soil and Proteobacteria abundance in subsurface soil exerted conspicuous influence on environmental factors and the microbial community structure. According to the findings of this study, it was believed that reasonable nitrogen application together with an organic agriculture cultivation system could effectively improve soil fertility in Gaoyou City, Jiangsu Province, China.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients

          Terrestrial ecosystems are receiving elevated inputs of nitrogen (N) from anthropogenic sources and understanding how these increases in N availability affect soil microbial communities is critical for predicting the associated effects on belowground ecosystems. We used a suite of approaches to analyze the structure and functional characteristics of soil microbial communities from replicated plots in two long-term N fertilization experiments located in contrasting systems. Pyrosequencing-based analyses of 16S rRNA genes revealed no significant effects of N fertilization on bacterial diversity, but significant effects on community composition at both sites; copiotrophic taxa (including members of the Proteobacteria and Bacteroidetes phyla) typically increased in relative abundance in the high N plots, with oligotrophic taxa (mainly Acidobacteria) exhibiting the opposite pattern. Consistent with the phylogenetic shifts under N fertilization, shotgun metagenomic sequencing revealed increases in the relative abundances of genes associated with DNA/RNA replication, electron transport and protein metabolism, increases that could be resolved even with the shallow shotgun metagenomic sequencing conducted here (average of 75 000 reads per sample). We also observed shifts in the catabolic capabilities of the communities across the N gradients that were significantly correlated with the phylogenetic and metagenomic responses, indicating possible linkages between the structure and functioning of soil microbial communities. Overall, our results suggest that N fertilization may, directly or indirectly, induce a shift in the predominant microbial life-history strategies, favoring a more active, copiotrophic microbial community, a pattern that parallels the often observed replacement of K-selected with r-selected plant species with elevated N.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Significant acidification in major Chinese croplands.

            Soil acidification is a major problem in soils of intensive Chinese agricultural systems. We used two nationwide surveys, paired comparisons in numerous individual sites, and several long-term monitoring-field data sets to evaluate changes in soil acidity. Soil pH declined significantly (P < 0.001) from the 1980s to the 2000s in the major Chinese crop-production areas. Processes related to nitrogen cycling released 20 to 221 kilomoles of hydrogen ion (H+) per hectare per year, and base cations uptake contributed a further 15 to 20 kilomoles of H+ per hectare per year to soil acidification in four widespread cropping systems. In comparison, acid deposition (0.4 to 2.0 kilomoles of H+ per hectare per year) made a small contribution to the acidification of agricultural soils across China.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The priming effect of organic matter: a question of microbial competition?

                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                16 February 2023
                2023
                : 14
                : 1072228
                Affiliations
                [1] 1Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University , Yangzhou, China
                [2] 2Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University , Yangzhou, China
                Author notes

                Edited by: Jesús Navas-Castillo, IHSM La Mayora (CSIC), Spain

                Reviewed by: Arturo Fabiani, Agricoltura e Ambiente (CREA-AA), Italy; Guangbin Zhang, Institute of Soil Science (CAS), China

                *Correspondence: Lifen Huang, ✉ lfhuang@ 123456yzu.edu.cn

                These authors have contributed equally to this work and share first authorship

                This article was submitted to Microbe and Virus Interactions with Plants, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2023.1072228
                9978222
                36876089
                e9124356-98b2-4214-b658-ab7a079f517e
                Copyright © 2023 Xu, Chen, Zang, Li, Zhao, Lu, Jiang, Zhuang and Huang.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 17 October 2022
                : 31 January 2023
                Page count
                Figures: 9, Tables: 2, Equations: 0, References: 59, Pages: 14, Words: 9831
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                organic farming,nitrogen level,soil depth,soil nutrient,soil enzyme,soil microorganism

                Comments

                Comment on this article