19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular Communication of a Dying Neuron in Stroke

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          When a main artery of the brain occludes, a cellular response involving multiple cell types follows. Cells directly affected by the lack of glucose and oxygen in the neuronal core die by necrosis. In the periphery surrounding the ischemic core (the so-called penumbra) neurons, astrocytes, microglia, oligodendrocytes, pericytes, and endothelial cells react to detrimental factors such as excitotoxicity, oxidative stress, and inflammation in different ways. The fate of the neurons in this area is multifactorial, and communication between all the players is important for survival. This review focuses on the latest research relating to synaptic loss and the release of apoptotic bodies and other extracellular vesicles for cellular communication in stroke. We also point out possible treatment options related to increasing neuronal survival and regeneration in the penumbra.

          Related collections

          Most cited references78

          • Record: found
          • Abstract: found
          • Article: not found

          Biogenesis and secretion of exosomes.

          Although observed for several decades, the release of membrane-enclosed vesicles by cells into their surrounding environment has been the subject of increasing interest in the past few years, which led to the creation, in 2012, of a scientific society dedicated to the subject: the International Society for Extracellular Vesicles. Convincing evidence that vesicles allow exchange of complex information fuelled this rise in interest. But it has also become clear that different types of secreted vesicles co-exist, with different intracellular origins and modes of formation, and thus probably different compositions and functions. Exosomes are one sub-type of secreted vesicles. They form inside eukaryotic cells in multivesicular compartments, and are secreted when these compartments fuse with the plasma membrane. Interestingly, different families of molecules have been shown to allow intracellular formation of exosomes and their subsequent secretion, which suggests that even among exosomes different sub-types exist. Copyright © 2014 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Global Burden of Stroke.

            On the basis of the GBD (Global Burden of Disease) 2013 Study, this article provides an overview of the global, regional, and country-specific burden of stroke by sex and age groups, including trends in stroke burden from 1990 to 2013, and outlines recommended measures to reduce stroke burden. It shows that although stroke incidence, prevalence, mortality, and disability-adjusted life-years rates tend to decline from 1990 to 2013, the overall stroke burden in terms of absolute number of people affected by, or who remained disabled from, stroke has increased across the globe in both men and women of all ages. This provides a strong argument that "business as usual" for primary stroke prevention is not sufficiently effective. Although prevention of stroke is a complex medical and political issue, there is strong evidence that substantial prevention of stroke is feasible in practice. The need to scale-up the primary prevention actions is urgent.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Temporal and spatial dynamics of cerebral immune cell accumulation in stroke.

              Ischemic stroke leads to significant morbidity and mortality in the Western world. Early reperfusion strategies remain the treatment of choice but can initiate and augment an inflammatory response causing secondary brain damage. The understanding of postischemic inflammation is very limited. The objectives of this study were to define the temporal and spatial infiltration of immune cell populations and their activation patterns in a murine cerebral ischemia-reperfusion injury model. Transient middle cerebral artery occlusion was induced for 1 hour followed by 12-hour to 7-day reperfusion in C57/BL6 mice. Immunohistochemistry and flow cytometry were used to quantify the infiltrating immune cell subsets. Accumulation of microglia and infiltration of the ischemic hemisphere by macrophages, lymphocytes, and dendritic cells (DCs) preceded the neutrophilic influx. DCs were found to increase 20-fold and constituted a substantial proportion of infiltrating cells. DCs exhibited a significant upregulation of major histocompatibility complex II and major histocompatibility complex II high-expressing DCs were found 100 times more abundant than in sham conditions. Upregulation of the costimulatory molecule CD80 was observed in DCs and microglial cells but did not further increase in major histocompatibility complex II high-expressing DCs. No lymphocyte activation was observed. Additionally, regulatory immune cells (natural killer T-cells, CD4(-)/CD8(-)T lymphocytes) cumulated in the ischemic hemisphere. This study provides a detailed analysis of the temporal dynamics of immune cell accumulation in a rodent stroke model. The peculiar activation pattern and massive increase of antigen-presenting cells in temporal conjunction with regulatory cells might provide additional insight into poststroke immune regulation.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                19 September 2018
                September 2018
                : 19
                : 9
                : 2834
                Affiliations
                Experimental Research in Stroke and Inflammation (ERSI) Group, Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; s.brenna@ 123456uke.de
                Author notes
                [* ]Correspondence: b.puig-martorell@ 123456uke.de (B.P.); t.magnus@ 123456uke.de (T.M.); Fax: +49-(40)-7410-55591 (B.P. & T.M.)
                Author information
                https://orcid.org/0000-0002-2255-8393
                Article
                ijms-19-02834
                10.3390/ijms19092834
                6164443
                30235837
                e92188de-22a6-4097-ba2e-54d8bead1c87
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 01 September 2018
                : 15 September 2018
                Categories
                Review

                Molecular biology
                stroke,brain ischemia,neuronal cell death,apoptotic bodies,synapses,extracellular vesicles

                Comments

                Comment on this article