17
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      International Journal of Nanomedicine (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the application of nanotechnology in diagnostics, therapeutics, and drug delivery systems throughout the biomedical field. Sign up for email alerts here.

      105,621 Monthly downloads/views I 7.033 Impact Factor I 10.9 CiteScore I 1.22 Source Normalized Impact per Paper (SNIP) I 1.032 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Poly(2-(diethylamino)ethyl methacrylate)-based, pH-responsive, copolymeric mixed micelles for targeting anticancer drug control release

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We have demonstrated a novel drug delivery system to improve the selectivity of the current chemotherapy by pH-responsive, polymeric micelle carriers. The micelle carriers were prepared by the self-assembly of copolymers containing the polybasic poly(2-(diethylamino) ethyl methacrylate) (PDEAEMA) block. The mixed copolymers exhibited a comparatively low critical micelle concentration (CMC; 1.95–5.25 mg/L). The resultant mixed micelles were found to be <100 nm and were used to encapsulate the anticancer drug doxorubicin (DOX) with pretty good drug-loading content (24%) and entrapment efficiency (55%). Most importantly, the micelle carrier exhibited a pH-dependent conformational conversion and promoted the DOX release at the tumorous pH. Our in vitro studies demonstrated the comparable level of DOX-loaded mixed micelle delivery into tumor cells with the free DOX (80% of the tumor cells were killed after 48 h incubation). The DOX-loaded mixed micelles were effective to inhibit the proliferation of tumor cells after prolonged incubation. Overall, the pH-responsive mixed micelle system provided desirable potential in the controlled release of anticancer therapeutics.

          Most cited references42

          • Record: found
          • Abstract: not found
          • Article: not found

          A simple equation for description of solute release II. Fickian and anomalous release from swellable devices

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Atom Transfer Radical Polymerization (ATRP): Current Status and Future Perspectives

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery.

              We show that large surface areas exist for supramolecular chemistry on single-walled carbon nanotubes (SWNTs) prefunctionalized noncovalently or covalently by common surfactant or acid-oxidation routes. Water-soluble SWNTs with poly(ethylene glycol) (PEG) functionalization via these routes allow for surprisingly high degrees of pi-stacking of aromatic molecules, including a cancer drug (doxorubicin) with ultrahigh loading capacity, a widely used fluorescence molecule (fluorescein), and combinations of molecules. Binding of molecules to nanotubes and their release can be controlled by varying the pH. The strength of pi-stacking of aromatic molecules is dependent on nanotube diameter, leading to a method for controlling the release rate of molecules from SWNTs by using nanotube materials with suitable diameter. This work introduces the concept of "functionalization partitioning" of SWNTs, i.e., imparting multiple chemical species, such as PEG, drugs, and fluorescent tags, with different functionalities onto the surface of the same nanotube. Such chemical partitioning should open up new opportunities in chemical, biological, and medical applications of novel nanomaterials.
                Bookmark

                Author and article information

                Journal
                Int J Nanomedicine
                Int J Nanomedicine
                International Journal of Nanomedicine
                International Journal of Nanomedicine
                Dove Medical Press
                1176-9114
                1178-2013
                2017
                14 September 2017
                : 12
                : 6857-6870
                Affiliations
                [1 ]School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, People’s Republic of China
                [2 ]Department of Chemistry, University of Houston, Houston, TX, USA
                [3 ]School of Bioscience & Bioengineering, South China University of Technology, Guangzhou, People’s Republic of China
                Author notes
                Correspondence: Lijuan Zhang, School of Chemistry and Chemical Engineering, South China University of Technology, Building 16, Wushan Road 381, Tianhe District, Guangzhou 510640, People’s Republic of China, Tel/fax +86 20 8711 2046, Email celjzh@ 123456scut.edu.cn
                Article
                ijn-12-6857
                10.2147/IJN.S143927
                5604559
                e924a576-4eda-4edd-bee2-ad13f7b1fdd3
                © 2017 Chen et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Molecular medicine
                pdeaema,copolymers,ph-responsive,mixed micelle,dox,targeting delivery
                Molecular medicine
                pdeaema, copolymers, ph-responsive, mixed micelle, dox, targeting delivery

                Comments

                Comment on this article