Blog
About

14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Circadian Cycling of the Mouse Liver Transcriptome, as Revealed by cDNA Microarray, Is Driven by the Suprachiasmatic Nucleus

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Genes encoding the circadian pacemaker in the hypothalamic suprachiasmatic nuclei (SCN) of mammals have recently been identified, but the molecular basis of circadian timing in peripheral tissue is not well understood. We used a custom-made cDNA microarray to identify mouse liver transcripts that show circadian cycles of abundance under constant conditions. Using two independent tissue sampling and hybridization regimes, we show that approximately 9% of the 2122 genes studied show robust circadian cycling in the liver. These transcripts were categorized by their phase of abundance, defining clusters of day- and night-related genes, and also by the function of their products. Circadian regulation of genes was tissue specific, insofar as novel rhythmic liver genes were not necessarily rhythmic in the brain, even when expressed in the SCN. The rhythmic transcriptome in the periphery is, nevertheless, dependent on the SCN because surgical ablation of the SCN severely dampened or destroyed completely the cyclical expression of both canonical circadian genes and novel genes identified by microarray analysis. Temporally complex, circadian programming of the transcriptome in a peripheral organ is imposed across a wide range of core cellular functions and is dependent on an interaction between intrinsic, tissue-specific factors and extrinsic regulation by the SCN central pacemaker.

          Related collections

          Author and article information

          Journal
          Current Biology
          Current Biology
          Elsevier BV
          09609822
          April 2002
          April 2002
          : 12
          : 7
          : 540-550
          10.1016/S0960-9822(02)00759-5
          11937022
          © 2002

          https://www.elsevier.com/tdm/userlicense/1.0/

          https://www.elsevier.com/open-access/userlicense/1.0/

          Comments

          Comment on this article