1
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Guidelines for Reopening a Nation in a SARS-CoV-2 Pandemic: A Path Forward

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background and Objectives: Action, not fear, is the path forward in the coronavirus infectious disease 2019 (COVID-19) pandemic. Since early 2020, the world’s nations have faced conundrums over severe acute respiratory syndrome corona virus type 2 (SARS-CoV-2) infections resulting in COVID-19 resulting in national closures, and thus, a clear understandable plan that nations can implement is required to reopen. The healthcare benefits of reopening a nation more likely than not exceed the benefits of continued pandemic-related closure. Pandemic-related closures have resulted in countless delayed or avoided urgent care evaluations. Furthermore, routine care of acute and chronic illnesses, including evaluations, diagnoses, and treatments, has also been delayed. Isolation, loss of income, and fear have resulted in mental health conditions or exacerbated existing conditions. The magnitude of untoward ramifications is unknown and may ultimately represent an inestimable degree of danger and morbidity, and even death. The pandemic of SARS-CoV-2 has created an atmosphere of fear of COVID-19 that has directly and indirectly injured the world’s population. Since this has resulted in increasing morbidity and mortality, creating economic chaos, and near systemic collapse of educational systems with no well described plan forward, it is the purpose of this study to provide guidelines that provide a path forward to safely open a nation. Physicians often equipped by their education, training, and experiences across disciplines are uniquely positioned to comprehend, coordinate, and teach other physicians, business owners, and municipal and government leaders from guidelines. As such, physicians may take the lead in a path forward to reopening a nation, including opening businesses, educational facilities, and religious establishments, while minimizing the risk of SARS-CoV-2 infection. Materials and Methods: Reviews of the literature among the disciplines of environmental air, sanitation, social interaction, medical testing, vaccination, protection, and disease prevention and safety allowed for the conceptualization and eventual genesis of identifiable interventions which either reduce the viral load in the environment or inactivate the virus from replication. Each of the guidelines was selected based on the principle that it involved the elimination or inactivation of the viral particle. With a reduction in viral load or inactivation of replication, the implementation of these guidelines is expected to allow for reopening a nation with an increased level of safety. Results: The guidelines identified, including air exchange (ventilation), air filtration, personal protective filtering devices (masks), hand hygiene, social distancing, screening and testing, vaccines, high-risk patient protection, medical management, and adjunctive therapies, are described and referenced. Conclusions: In that the pandemic is primarily a public health issue, the path forward is best coordinated by local, regional, and national physicians. Many physicians with a breadth of experiences are uniquely positioned to coordinate the implementation of these interdisciplinary guidelines. Using these guidelines as a planned, coordinated action, not fear, is a path forward. Nations have a decision to make: closuring versus opening.

          Related collections

          Most cited references 146

          • Record: found
          • Abstract: found
          • Article: not found

          A Novel Coronavirus from Patients with Pneumonia in China, 2019

          Summary In December 2019, a cluster of patients with pneumonia of unknown cause was linked to a seafood wholesale market in Wuhan, China. A previously unknown betacoronavirus was discovered through the use of unbiased sequencing in samples from patients with pneumonia. Human airway epithelial cells were used to isolate a novel coronavirus, named 2019-nCoV, which formed a clade within the subgenus sarbecovirus, Orthocoronavirinae subfamily. Different from both MERS-CoV and SARS-CoV, 2019-nCoV is the seventh member of the family of coronaviruses that infect humans. Enhanced surveillance and further investigation are ongoing. (Funded by the National Key Research and Development Program of China and the National Major Project for Control and Prevention of Infectious Disease in China.)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A pneumonia outbreak associated with a new coronavirus of probable bat origin

            Since the outbreak of severe acute respiratory syndrome (SARS) 18 years ago, a large number of SARS-related coronaviruses (SARSr-CoVs) have been discovered in their natural reservoir host, bats 1–4 . Previous studies have shown that some bat SARSr-CoVs have the potential to infect humans 5–7 . Here we report the identification and characterization of a new coronavirus (2019-nCoV), which caused an epidemic of acute respiratory syndrome in humans in Wuhan, China. The epidemic, which started on 12 December 2019, had caused 2,794 laboratory-confirmed infections including 80 deaths by 26 January 2020. Full-length genome sequences were obtained from five patients at an early stage of the outbreak. The sequences are almost identical and share 79.6% sequence identity to SARS-CoV. Furthermore, we show that 2019-nCoV is 96% identical at the whole-genome level to a bat coronavirus. Pairwise protein sequence analysis of seven conserved non-structural proteins domains show that this virus belongs to the species of SARSr-CoV. In addition, 2019-nCoV virus isolated from the bronchoalveolar lavage fluid of a critically ill patient could be neutralized by sera from several patients. Notably, we confirmed that 2019-nCoV uses the same cell entry receptor—angiotensin converting enzyme II (ACE2)—as SARS-CoV.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding

              Summary Background In late December, 2019, patients presenting with viral pneumonia due to an unidentified microbial agent were reported in Wuhan, China. A novel coronavirus was subsequently identified as the causative pathogen, provisionally named 2019 novel coronavirus (2019-nCoV). As of Jan 26, 2020, more than 2000 cases of 2019-nCoV infection have been confirmed, most of which involved people living in or visiting Wuhan, and human-to-human transmission has been confirmed. Methods We did next-generation sequencing of samples from bronchoalveolar lavage fluid and cultured isolates from nine inpatients, eight of whom had visited the Huanan seafood market in Wuhan. Complete and partial 2019-nCoV genome sequences were obtained from these individuals. Viral contigs were connected using Sanger sequencing to obtain the full-length genomes, with the terminal regions determined by rapid amplification of cDNA ends. Phylogenetic analysis of these 2019-nCoV genomes and those of other coronaviruses was used to determine the evolutionary history of the virus and help infer its likely origin. Homology modelling was done to explore the likely receptor-binding properties of the virus. Findings The ten genome sequences of 2019-nCoV obtained from the nine patients were extremely similar, exhibiting more than 99·98% sequence identity. Notably, 2019-nCoV was closely related (with 88% identity) to two bat-derived severe acute respiratory syndrome (SARS)-like coronaviruses, bat-SL-CoVZC45 and bat-SL-CoVZXC21, collected in 2018 in Zhoushan, eastern China, but were more distant from SARS-CoV (about 79%) and MERS-CoV (about 50%). Phylogenetic analysis revealed that 2019-nCoV fell within the subgenus Sarbecovirus of the genus Betacoronavirus, with a relatively long branch length to its closest relatives bat-SL-CoVZC45 and bat-SL-CoVZXC21, and was genetically distinct from SARS-CoV. Notably, homology modelling revealed that 2019-nCoV had a similar receptor-binding domain structure to that of SARS-CoV, despite amino acid variation at some key residues. Interpretation 2019-nCoV is sufficiently divergent from SARS-CoV to be considered a new human-infecting betacoronavirus. Although our phylogenetic analysis suggests that bats might be the original host of this virus, an animal sold at the seafood market in Wuhan might represent an intermediate host facilitating the emergence of the virus in humans. Importantly, structural analysis suggests that 2019-nCoV might be able to bind to the angiotensin-converting enzyme 2 receptor in humans. The future evolution, adaptation, and spread of this virus warrant urgent investigation. Funding National Key Research and Development Program of China, National Major Project for Control and Prevention of Infectious Disease in China, Chinese Academy of Sciences, Shandong First Medical University.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Medicina (Kaunas)
                Medicina (Kaunas)
                medicina
                Medicina
                MDPI
                1010-660X
                1648-9144
                14 May 2021
                May 2021
                : 57
                : 5
                Affiliations
                [1 ]Johns Hopkins Community Physician, Baltimore, MD 21287, USA; terrancelbakermd@ 123456prodigy.net
                [2 ]School of Nursing, University of Maryland, Baltimore, MD 20742, USA
                [3 ]School of Nursing, State University of New York at Stony Brook, Brookhaven, NY 11794, USA
                [4 ]Sollay Medical Center, Sollay Kenyan Foundation, Katani Hospital, Katani, Kenya
                [5 ]Eye Research Institute of Massachusetts Eye & Ear, 20 Staniford St., W239, Boston, MA 02114, USA
                [6 ]Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
                [7 ]Department of Ophthalmology, Tufts University School of Medicine, Boston, MA 02155, USA
                Author notes
                [* ]Correspondence: jack_greiner@ 123456meei.harvard.edu ; Tel.: +1-(617)-742-3140
                Article
                medicina-57-00496
                10.3390/medicina57050496
                8153561
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                Categories
                Article

                Comments

                Comment on this article