3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Leonurine-Repressed miR-18a-5p/SOCS5/JAK2/STAT3 Axis Activity Disrupts CML malignancy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Leonurine, an active natural alkaloid compound isolated from Herba leonuri, has been reported to exhibit promising anticancer activity in solid tumors. The aim of this study was to explore whether leonurine is able to inhibit chronic myeloid leukemia (CML) malignancy. Here, we found that leonurine dose dependently inhibited the proliferation, migration, colony formation and promoted apoptosis of CML cells. Furthermore, leonurine markedly reduced CML xenograft growth in vivo. Mechanically, leonurine upregulated SOCS5 expression, thus leading JAK2/STAT3 signaling suppression. Silencing of SOCS5 by its siRNA abrogated the effect of leonurine on CML cells, demonstrating that SOCS5 mediates the anti-leukemia effect of leonurine. Notably, we observed that miR-18a-5p was remarkably increased in CML cells. Treating CML cells with leonurine significantly decreased miR-18a-5p expression. Moreover, we found miR-18a-5p repressed SOCS5 by directly targeting its 3′-UTR. miR-18a-5p downregulation induced by leonurine reduced the biological activity of CML cells by relieving miR-18a-5p repression of SOCS5 expression. Taken together, leonurine exerts significant anti-leukemia efficacy in CML by regulating miR-18a-5p/SOCS5/JAK2/STAT3 axis.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Gene Expression Omnibus: NCBI gene expression and hybridization array data repository.

          R. Edgar (2002)
          The Gene Expression Omnibus (GEO) project was initiated in response to the growing demand for a public repository for high-throughput gene expression data. GEO provides a flexible and open design that facilitates submission, storage and retrieval of heterogeneous data sets from high-throughput gene expression and genomic hybridization experiments. GEO is not intended to replace in house gene expression databases that benefit from coherent data sets, and which are constructed to facilitate a particular analytic method, but rather complement these by acting as a tertiary, central data distribution hub. The three central data entities of GEO are platforms, samples and series, and were designed with gene expression and genomic hybridization experiments in mind. A platform is, essentially, a list of probes that define what set of molecules may be detected. A sample describes the set of molecules that are being probed and references a single platform used to generate its molecular abundance data. A series organizes samples into the meaningful data sets which make up an experiment. The GEO repository is publicly accessible through the World Wide Web at http://www.ncbi.nlm.nih.gov/geo.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The functions of animal microRNAs.

            MicroRNAs (miRNAs) are small RNAs that regulate the expression of complementary messenger RNAs. Hundreds of miRNA genes have been found in diverse animals, and many of these are phylogenetically conserved. With miRNA roles identified in developmental timing, cell death, cell proliferation, haematopoiesis and patterning of the nervous system, evidence is mounting that animal miRNAs are more numerous, and their regulatory impact more pervasive, than was previously suspected.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Targeting the IL-6/JAK/STAT3 signalling axis in cancer

              The IL-6/JAK/STAT3 pathway is aberrantly hyperactivated in many types of cancer, and such hyperactivation is generally associated with a poor clinical prognosis. In the tumour microenvironment, IL-6/JAK/STAT3 signalling acts to drive the proliferation, survival, invasiveness, and metastasis of tumour cells, while strongly suppressing the antitumour immune response. Thus, treatments that target the IL-6/JAK/STAT3 pathway in patients with cancer are poised to provide therapeutic benefit by directly inhibiting tumour cell growth and by stimulating antitumour immunity. Agents targeting IL-6, the IL-6 receptor, or JAKs have already received FDA approval for the treatment of inflammatory conditions or myeloproliferative neoplasms and for the management of certain adverse effects of chimeric antigen receptor T cells, and are being further evaluated in patients with haematopoietic malignancies and in those with solid tumours. Novel inhibitors of the IL-6/JAK/STAT3 pathway, including STAT3-selective inhibitors, are currently in development. Herein, we review the role of IL-6/JAK/STAT3 signalling in the tumour microenvironment and the status of preclinical and clinical investigations of agents targeting this pathway. We also discuss the potential of combining IL-6/JAK/STAT3 inhibitors with currently approved therapeutic agents directed against immune-checkpoint inhibitors.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pharmacol
                Front Pharmacol
                Front. Pharmacol.
                Frontiers in Pharmacology
                Frontiers Media S.A.
                1663-9812
                16 April 2021
                2021
                : 12
                : 657724
                Affiliations
                [ 1 ]Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
                [ 2 ]Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
                [ 3 ]Basic Laboratory of Internal Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, China
                Author notes

                Edited by: Jiang-Jiang Qin, Chinese Academy of Sciences (CAS), China

                Reviewed by: Vildan Bozok Cetintas, Ege University, Turkey

                Buket Kosova, Ege University, Turkey

                *Correspondence: Lin-Hua Yang, yanglh5285@ 123456sina.com ; Yan-Ping Ma, myp_sxmu@ 123456163.com

                This article was submitted to Pharmacology of Anti-Cancer Drugs, a section of the journal Frontiers in Pharmacology

                [†]

                These authors have contributed equally to this work

                Article
                657724
                10.3389/fphar.2021.657724
                8087248
                33935775
                e93ba12a-d319-411b-9d29-592a620192bd
                Copyright © 2021 Liu, Guo, Zhang, Chen, Liang, Yang and Ma.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 23 January 2021
                : 18 March 2021
                Categories
                Pharmacology
                Original Research

                Pharmacology & Pharmaceutical medicine
                leonurine,chronic myeloid leukemia,mir-18a-5p,socs5,stat3
                Pharmacology & Pharmaceutical medicine
                leonurine, chronic myeloid leukemia, mir-18a-5p, socs5, stat3

                Comments

                Comment on this article