80
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Olfactory receptors in non-chemosensory tissues

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Olfactory receptors (ORs) detect volatile chemicals that lead to the initial perception of smell in the brain. The olfactory receptor (OR) is the first protein that recognizes odorants in the olfactory signal pathway and it is present in over 1,000 genes in mice. It is also the largest member of the G protein-coupled receptors (GPCRs). Most ORs are extensively expressed in the nasal olfactory epithelium where they perform the appropriate physiological functions that fit their location. However, recent whole-genome sequencing shows that ORs have been found outside of the olfactory system, suggesting that ORs may play an important role in the ectopic expression of non-chemosensory tissues. The ectopic expressions of ORs and their physiological functions have attracted more attention recently since MOR23 and testicular hOR17-4 have been found to be involved in skeletal muscle development, regeneration, and human sperm chemotaxis, respectively. When identifying additional expression profiles and functions of ORs in non-olfactory tissues, there are limitations posed by the small number of antibodies available for similar OR genes. This review presents the results of a research series that identifies ectopic expressions and functions of ORs in non-chemosensory tissues to provide insight into future research directions. [BMB Reports 2012; 45(11): 612-622]

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: not found

          A novel multigene family may encode odorant receptors: a molecular basis for odor recognition.

          The mammalian olfactory system can recognize and discriminate a large number of different odorant molecules. The detection of chemically distinct odorants presumably results from the association of odorous ligands with specific receptors on olfactory sensory neurons. To address the problem of olfactory perception at a molecular level, we have cloned and characterized 18 different members of an extremely large multigene family that encodes seven transmembrane domain proteins whose expression is restricted to the olfactory epithelium. The members of this novel gene family are likely to encode a diverse family of odorant receptors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Allelic inactivation regulates olfactory receptor gene expression.

            We suggest a model in which a hierarchy of controls is exerted on the family of odorant receptor genes to assure that a sensory neuron expresses a single receptor from a family of 1000 genes. We propose that a cis-regulatory element directs the stochastic expression of only one gene from a large array of linked receptor genes. Moreover, only one allelic array encoding multiple receptor genes is active in an individual neuron. We demonstrate that in a neuron expressing a given receptor, expression derives exclusively from one allele. In addition, we observe that alleles encoding the odorant receptors are replicated asynchronously, a phenomenon consistently associated with allelic inactivation. This model, involving inactivation of one allelic array and cis control of the active array, provides a mechanism such that individual neurons express one or a small number of receptors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The olfactory receptor gene superfamily of the mouse

              Olfactory receptor (OR) genes are the largest gene superfamily in vertebrates. We have identified the mouse OR genes from the nearly complete Celera mouse genome by a comprehensive data mining strategy. We found 1,296 mouse OR genes (including 20% pseudogenes), which can be classified into 228 families. OR genes are distributed in 27 clusters on all mouse chromosomes except 12 and Y. One OR gene cluster matches a known locus mediating a specific anosmia, indicating the anosmia may be due directly to the loss of receptors. A large number of apparently functional 'fish-like' Class I OR genes in the mouse genome may have important roles in mammalian olfaction. Human ORs cover a similar 'receptor space' as the mouse ORs, suggesting that the human olfactory system has retained the ability to recognize a broad spectrum of chemicals even though humans have lost nearly two-thirds of the OR genes as compared to mice.
                Bookmark

                Author and article information

                Journal
                BMB Rep
                BMB Rep
                ksbmb
                BMB reports
                Korean Society for Biochemistry and Molecular Biology
                1976-6696
                1976-670X
                November 2012
                : 45
                : 11
                : 612-622
                Affiliations
                Department of Brain Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873, Korea
                Author notes
                [* ]Corresponding author. Tel: +82-53-785-6112; Fax: +82-53-785-6109; E-mail: jkoo001@ 123456dgist.ac.kr
                Article
                BMB-45-612
                10.5483/BMBRep.2012.45.11.232
                4133803
                23186999
                e9526508-9a7a-43e2-81f2-afc24bf23f4e
                Copyright © 2012, Korean Society for Biochemistry and Molecular Biology

                This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 07 November 2012
                Categories
                Articles

                ectopic expression,non-chemosensory tissues,odorant,olfactory receptor,smell

                Comments

                Comment on this article