22
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Population Structure and Genetic Diversity of Italian Beef Breeds as a Tool for Planning Conservation and Selection Strategies

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Simple Summary

          The recent alarming reports on global climate change and the challenges facing the agricultural sector to meet the increase in meat consumption, impose research in biodiversity. An important genetic pool of local breeds might play a crucial role in the near future to address these challenges. Although Italy is considered as one of the richest countries in biodiversity, there are autochthonous cattle breeds under extinction. To safeguard biodiversity and increase genetic diversity within breeds, appropriate management tools must be developed. To achieve this, precise knowledge of the population structure and genetic diversity per breed are required. This study analyzed pedigree data of six local beef breeds: Calvana, Mucca Pisana, and Pontremolese (from the region of Tuscany), all under extinction, and Sarda, Sardo Bruna, and Sardo Modicana, from the island of Sardinia, that are larger in number but of lower productivity. In addition, the study investigated the population structure of the cosmopolitan beef breeds, Charolais and Limousine, reared in the same regions and undergoing selection. The high mating percentage between relatives for Mucca Pisana and Calvana is an alarming situation for these breeds. The population structure of the Sardinian breeds suggests the application of breeding programs.

          Abstract

          The aim was to investigate the population structure of eight beef breeds: three local Tuscan breeds under extinction, Calvana (CAL), Mucca Pisana (MUP), and Pontremolese (PON); three local unselected breeds reared in Sardinia, Sarda (SAR), Sardo Bruna (SAB), and Sardo Modicana (SAM); and two cosmopolitan breeds, Charolais (CHA) and Limousine (LIM), reared in the same regions. An effective population size ranges between 14.62 (PON) to 39.79 (SAM) in local breeds, 90.29 for CHA, and 135.65 for LIM. The average inbreeding coefficients were higher in Tuscan breeds (7.25%, 5.10%, and 3.64% for MUP, CAL, and PON, respectively) compared to the Sardinian breeds (1.23%, 1.66%, and 1.90% in SAB, SAM, and SAR, respectively), while for CHA and LIM they were <1%. The highest rates of mating between half-siblings were observed for CAL and MUP (~9% and 6.5%, respectively), while the highest rate of parent–offspring mating was ~8% for MUP. Our findings describe the urgent situation of the three Tuscan breeds and support the application of conservation measures and/or the development of breeding programs. Development of breeding strategies is suggested for the Sardinian breeds.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          A population genetics view of animal domestication.

          The fundamental shift associated with the domestication of plants and animals allowed for a dramatic increase in human population sizes and the emergence of modern society. Despite its importance and the decades of research devoted to studying it, questions regarding the origins and processes of domestication remain. Here, we review recent theoretical advances and present a perspective that underscores the crucial role that population admixture has played in influencing the genomes of domestic animals over the past 10000 years. We then discuss novel approaches to generating and analysing genetic data, emphasising the importance of an explicit hypothesis-testing approach for the inference of the origins and subsequent evolution and demography of domestic animals. By applying next-generation sequencing technology alongside appropriate biostatistical methodologies, a substantially deeper understanding of domestication is on the horizon. Copyright © 2013 Elsevier Ltd. All rights reserved.
            • Record: found
            • Abstract: found
            • Article: not found

            Genetic contributions and their optimization.

            Genetic contributions were first formalized in 1958 by James and McBride (Journal of Genetics, 56, 55-62) and have since been shown to provide a unifying framework for theories of gain and inbreeding. As such they have underpinned the development of methods that provide the most effective combination of maximizing gain whilst managing inbreeding and loss of genetic variation. It is shown how this optimum contribution technology can be developed from theory and adapted to provide practical selection protocols for a wide variety of situations including overlapping generations and multistage selection. The natural development of the theory to incorporate genomic selection and genomic control of inbreeding is also shown.
              • Record: found
              • Abstract: found
              • Article: not found

              Invited review: Inbreeding in the genomics era: Inbreeding, inbreeding depression, and management of genomic variability.

              Traditionally, pedigree-based relationship coefficients have been used to manage the inbreeding and degree of inbreeding depression that exists within a population. The widespread incorporation of genomic information in dairy cattle genetic evaluations allows for the opportunity to develop and implement methods to manage populations at the genomic level. As a result, the realized proportion of the genome that 2 individuals share can be more accurately estimated instead of using pedigree information to estimate the expected proportion of shared alleles. Furthermore, genomic information allows genome-wide relationship or inbreeding estimates to be augmented to characterize relationships for specific regions of the genome. Region-specific stretches can be used to more effectively manage areas of low genetic diversity or areas that, when homozygous, result in reduced performance across economically important traits. The use of region-specific metrics should allow breeders to more precisely manage the trade-off between the genetic value of the progeny and undesirable side effects associated with inbreeding. Methods tailored toward more effectively identifying regions affected by inbreeding and their associated use to manage the genome at the herd level, however, still need to be developed. We have reviewed topics related to inbreeding, measures of relatedness, genetic diversity and methods to manage populations at the genomic level, and we discuss future challenges related to managing populations through implementing genomic methods at the herd and population levels.

                Author and article information

                Journal
                Animals (Basel)
                Animals (Basel)
                animals
                Animals : an Open Access Journal from MDPI
                MDPI
                2076-2615
                29 October 2019
                November 2019
                : 9
                : 11
                : 880
                Affiliations
                [1 ]Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali, Università di Firenze, 50144 Firenze, Italy; christos.dadousis@ 123456unifi.it (C.D.); riccardo.bozzi@ 123456unifi.it (R.B.)
                [2 ]Associazione Nazionale Allevatori Bovini di Razza Piemontese, 12061 Carrù, Italy; mpgrezende@ 123456gmail.com
                [3 ]Consiglio Nazionale delle Ricerche, Istituto di Biologia e Biotecnologia Agraria, 20133 Milano, Italy
                [4 ]Associazione Italiana Allevatori, 00161 Roma, Italy; riccardo.negrini@ 123456unicatt.it
                [5 ]Istituto di Zootecnica, Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del S.Cuore, 29100 Piacenza, Italy
                [6 ]Universidade Estadual Sudoeste da Bahia, Jequié, Bahia 45205-490, Brazil; carneiropls@ 123456gmail.com
                Author notes
                Author information
                https://orcid.org/0000-0002-7689-6443
                https://orcid.org/0000-0001-5559-3630
                Article
                animals-09-00880
                10.3390/ani9110880
                6912484
                31671823
                e9564a7c-c18e-4cee-bc68-b5af73384277
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 20 August 2019
                : 22 October 2019
                Categories
                Article

                genetic diversity,beef cattle,pedigree analysis,autochthonous breeds,conservation

                Comments

                Comment on this article

                Related Documents Log