8
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evaluación de la eficacia larvicida de Rapidall NP3 (Bacillus thuringiensis) contra Aedes aegypti (Linnaeus) (Diptera: Culicidae) en condiciones de laboratorio Translated title: Evaluation of the larvicidal efficacy of Rapidall NP3 (Bacillus thuringiensis) against Aedes aegypti (Linnaeus) (Diptera: Culicidae) in laboratory conditions

      rapid-communication

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          RESUMEN Los mosquitos son vectores trasmisores de enfermedades como: dengue, zika y chikunguya. El control biológico es una alternativa viable a tener en cuenta por los programas de control. Bacillus thuringiensis es el microorganismo más usado en salud pública. Su efectividad como larvicida contra culícidos depende, en gran medida, de la eficiencia del proceso productivo. El objetivo es evaluar y comparar la eficacia larvicida contra Aedes aegypti de la formulación en polvo Rapidall NP3 con la del producto Bactivec®, formulación líquida utilizada en Cuba. Se realizaron bioensayos de laboratorio según los procedimientos descritos y sugeridos por la OMS para determinar la eficacia, exponiendo las larvas a las concentraciones recomendadas por los fabricantes de los productos Rapidall NP3 y Bactivec®. A los recipientes utilizados se les realizó recambio de agua medio, total y sin recambio, con una frecuencia semanal. A las 24 h se calculó la mortalidad obtenida y se analizó estadísticamente mediante un ANOVA de una vía; cuando existieron diferencias significativas se aplicó un análisis Post-hoc mediante la prueba de Tukey. El producto evaluado Rapidall NP3, provocó 100 % de mortalidad larvaria durante 11 semanas, independientemente de la proporción de recambio de agua, mientras que el Bactivec® solo provocó 100 % de mortalidad hasta las 6 semanas de iniciado el experimento. El biolarvicida Rapidall NP3 mostró buena eficacia y actividad residual prolongada al compararlo con Bactivec®, por lo que recomendamos su evaluación en el terreno en el control larvario de depósitos que constituyen sitios de cría habituales y que no pueden ser eliminados físicamente.

          Translated abstract

          ABSTRACT Mosquitoes are vectors of human diseases such as dengue, zika and chikungunya. Biological control is a viable alternative to be taken into account in control programs. Bacillus thuringiensis is the microorganism most commonly used in public health. Its effectiveness as a larvicide against culicides depends to a great extent to the production process. The objectives of the study were to evaluate and compare the larvicidal efficacy against Aedes aegypti of the Rapidall NP3 powder formulation with Bactivec®, a liquid formulation used in Cuba. Laboratory bioassays were conducted to determine efficacy following WHO protocols. Larvae were exposed to the concentrations recommended by Rapidall NP3 and Bactivec® manufacturers. The water in the containers used in the study was replaced once a week: half, whole and no replacement. At 24 hours mortality was estimated and statistically analysis were done by one-way ANOVA. When significant differences were found, post-hoc analysis was performed with Tukey's test. Rapidall NP3 caused 100% larval mortality for 11 weeks, regardless of the water replacement proportion, whereas Bactivec® caused 100 % mortality for only 6 weeks after the start of the experiment. When compared with Bactivec®, biolarvicide Rapidall NP3 displayed better efficacy and more prolonged residual activity. We therefore recommend its field evaluation for larval control of containers constituting habitual breeding sites which cannot be physically eliminated.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Bacillus thuringiensis subsp. israelensis and Its Dipteran-Specific Toxins

          Bacillus thuringiensis subsp. israelensis (Bti) is the first Bacillus thuringiensis to be found and used as an effective biological control agent against larvae of many mosquito and black fly species around the world. Its larvicidal activity resides in four major (of 134, 128, 72 and 27 kDa) and at least two minor (of 78 and 29 kDa) polypeptides encoded respectively by cry4Aa, cry4Ba, cry11Aa, cyt1Aa, cry10Aa and cyt2Ba, all mapped on the 128 kb plasmid known as pBtoxis. These six δ-endotoxins form a complex parasporal crystalline body with remarkably high, specific and different toxicities to Aedes, Culex and Anopheles larvae. Cry toxins are composed of three domains (perforating domain I and receptor binding II and III) and create cation-selective channels, whereas Cyts are composed of one domain that acts as well as a detergent-like membrane perforator. Despite the low toxicities of Cyt1Aa and Cyt2Ba alone against exposed larvae, they are highly synergistic with the Cry toxins and hence their combinations prevent emergence of resistance in the targets. The lack of significant levels of resistance in field mosquito populations treated for decades with Bti-bioinsecticide suggests that this bacterium will be an effective biocontrol agent for years to come.
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Evidence for multiple-insecticide resistance in urban Aedes albopictus populations in southern China

            Background Aedes albopictus (Skuse) is an invasive mosquito that has become an important vector of chikungunya, dengue and Zika viruses. In the absence of specific antiviral therapy or a vaccine, vector management is the sole method available for reducing Aedes-induced disease morbidity. Determining the resistance status of Ae. albopictus to insecticides and exploring the resistance mechanisms is essential for future vector control planning. Methods Aedes albopictus larvae and pupae were sampled from six sites (two sites each from urban, suburban and rural) in Guangzhou. The resistance bioassays were conducted against Bacillus thuringiensis israelensis (Bti): deltamethrin, propoxur and malathion for larvae; and deltamethrin, DDT, propoxur and malathion for adults. P450 monooxygenase (P450s), glutathione S-transferase (GSTs) and carboxylesterase (COEs) activities of adult mosquitoes were measured. Mutations at the knockdown resistance (kdr) gene were analyzed, and the association between kdr mutations and phenotypic resistance was tested. Results Adult bioassays revealed varied susceptibility against DDT, deltamethrin and propoxur in the six Ae. albopictus populations. Significantly lower mortality rates were found in urban populations than suburban and rural populations. Urban mosquito populations showed resistance against DDT, deltamethrin and propoxur, while one rural population was resistant to DDT. All populations tested were susceptible to malathion. Larval bioassays results indicated that all populations of Ae. albopictus were sensitive to the larvicide Bti and malathion. Resistance to deltamethrin and propoxur was common in larval populations. The F1534S and F1534 L mutations were found to be significantly associated with deltamethrin resistance. Biochemical assays indicated elevated detoxification enzyme activities in the field mosquito populations. Conclusions Aedes albopictus populations in Guangzhou, especially in urban areas, have developed resistance to the commonly used insecticides, primarily DDT and deltamethrin. This finding calls for resistance management and developing counter measures to mitigate the spread of resistance. Electronic supplementary material The online version of this article (10.1186/s13071-017-2581-y) contains supplementary material, which is available to authorized users.
              • Record: found
              • Abstract: found
              • Article: not found

              Bacillus thuringiensis var. israelensis (Bti) Provides Residual Control of Aedes aegypti in Small Containers

              We examined the use of megadoses of VectoBac WG for residual control of Aedes aegypti in 2-L plastic buckets. Doses of 10x, 20x, and 50x the recommended rate of 8 mg/L provided >/= 90% control for 8, 8, and 23 weeks, respectively. There was no significant difference in mortality between dry (neat) or aqueous mixture of VectoBac WG. Pretreatment of dry containers up to 8 weeks before flooding did not significantly decrease efficacy through 11 success weeks. Thus, megadoses of dry formulations of Bti can be used for residual control of Ae. aegypti in small containers. Furthermore, these doses use small amounts of product (0.08-0.4 g/L) that is more practical to measure than the minute amounts (0.008 g/L) required by the recommended rate, and cost US$2.18 to treat 50 Cairns yards containing an average total of 80 containers. This method could also be used to control Aedes albopictus.

                Author and article information

                Journal
                mtr
                Revista Cubana de Medicina Tropical
                Rev Cubana Med Trop
                Centro Nacional de Información de Ciencias Médicas (Ciudad de la Habana, , Cuba )
                0375-0760
                1561-3054
                April 2019
                : 71
                : 1
                : e355
                Affiliations
                [1] La Habana orgnameInstituto de Medicina Tropical Pedro Kourí (IPK) Cuba
                Article
                S0375-07602019000100007 S0375-0760(19)07100100007
                e95f5fe0-4039-4953-ad92-a41959fd5346

                This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

                History
                : 29 June 2018
                : 05 October 2018
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 19, Pages: 0
                Product

                SciELO Cuba

                Categories
                COMUNICACIÓN BREVE

                Aedes aegypti,control biológico,biological control,efficacy,Bacillus thuringiensis,eficacia

                Comments

                Comment on this article

                Related Documents Log