Blog
About

4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Injector for scattering measurements on fully solvated biospecies.

      The Review of scientific instruments

      methods, instrumentation, X-Ray Diffraction, Vacuum, chemistry, Solvents, Motion, Lasers, Injections, Equipment Design, Biological Products

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We describe a liquid jet injector system developed to deliver fully solvated microscopic target species into a probe beam under either vacuum or ambient conditions. The injector was designed specifically for x-ray scattering studies of biological nanospecies using x-ray free electron lasers and third generation synchrotrons, but is of interest to any application in which microscopic samples must be delivered in a fully solvated state and with microscopic precision. By utilizing a gas dynamic virtual nozzle (GDVN) to generate a sample-containing liquid jet of diameter ranging from 300 nm to 20 μm, the injector avoids the clogging problems associated in this size range with conventional Rayleigh jets. A differential pumping system incorporated into the injector shields the experimental chamber from the gas load of the GDVN, making the injector compatible with high vacuum systems. The injector houses a fiber-optically coupled pump laser to illuminate the jet for pump-probe experiments and a hermetically sealed microscope to observe the liquid jet for diagnostics and alignment during operation. This injector system has now been used during several experimental runs at the Linac Coherent Light Source. Recent refinements in GDVN design are also presented.

          Related collections

          Author and article information

          Journal
          22462961
          10.1063/1.3693040

          Comments

          Comment on this article