17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Molecular Dissection of the Rho-associated Protein Kinase (p160ROCK)-regulated Neurite Remodeling in Neuroblastoma N1E-115 Cells

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A critical role for the small GTPase Rho and one of its targets, p160ROCK (a Rho-associated coiled coil-forming protein kinase), in neurite remodeling was examined in neuroblastoma N1E-115 cells. Using wild-type and a dominant-negative form of p160ROCK and a p160ROCK-specific inhibitor, Y-27632, we show here that p160ROCK activation is necessary and sufficient for the agonist-induced neurite retraction and cell rounding. The neurite retraction was accompanied by elevated phosphorylation of myosin light chain and the disassembly of the intermediate filaments and microtubules. Y-27632 blocked both neurite retraction and the elevation of myosin light chain phosphorylation in a similar concentration-dependent manner. On the other hand, suppression of p160ROCK activity by expression of a dominant-negative form of p160ROCK induced neurites in the presence of serum by inducing the reassembly of the intermediate filaments and microtubules. The neurite outgrowth by the p160ROCK inhibition was blocked by coexpression of dominant-negative forms of Cdc42 and Rac, indicating that p160ROCK constitutively and negatively regulates neurite formation at least in part by inhibiting activation of Cdc42 and Rac. The assembly of microtubules and intermediate filaments to form extended processes by inhibitors of the Rho–ROCK pathway was also observed in Swiss 3T3 cells. These results indicate that Rho/ROCK-dependent tonic inhibition of cell process extension is exerted via activation of the actomysin-based contractility, in conjunction with a suppression of assembly of intermediate filaments and microtubules in many cell types including, but not exclusive to, neuronal cells.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors.

          Actin stress fibers are one of the major cytoskeletal structures in fibroblasts and are linked to the plasma membrane at focal adhesions. rho, a ras-related GTP-binding protein, rapidly stimulated stress fiber and focal adhesion formation when microinjected into serum-starved Swiss 3T3 cells. Readdition of serum produced a similar response, detectable within 2 min. This activity was due to a lysophospholipid, most likely lysophosphatidic acid, bound to serum albumin. Other growth factors including PDGF induced actin reorganization initially to form membrane ruffles, and later, after 5 to 10 min, stress fibers. For all growth factors tested the stimulation of focal adhesion and stress fiber assembly was inhibited when endogenous rho function was blocked, whereas membrane ruffling was unaffected. These data imply that rho is essential specifically for the coordinated assembly of focal adhesions and stress fibers induced by growth factors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase).

            The small GTPase Rho is implicated in physiological functions associated with actin-myosin filaments such as cytokinesis, cell motility, and smooth muscle contraction. We have recently identified and molecularly cloned Rho-associated serine/threonine kinase (Rho-kinase), which is activated by GTP Rho (Matsui, T., Amano, M., Yamamoto, T., Chihara, K., Nakafuku, M., Ito, M., Nakano, T., Okawa, K., Iwamatsu, A., and Kaibuchi, K. (1996) EMBO J. 15, 2208-2216). Here we found that Rho-kinase stoichiometrically phosphorylated myosin light chain (MLC). Peptide mapping and phosphoamino acid analyses revealed that the primary phosphorylation site of MLC by Rho-kinase was Ser-19, which is the site phosphorylated by MLC kinase. Rho-kinase phosphorylated recombinant MLC, whereas it failed to phosphorylate recombinant MLC, which contained Ala substituted for both Thr-18 and Ser-19. We also found that the phosphorylation of MLC by Rho-kinase resulted in the facilitation of the actin activation of myosin ATPase. Thus, it is likely that once Rho is activated, then it can interact with Rho-kinase and activate it. The activated Rho-kinase subsequently phosphorylates MLC. This may partly account for the mechanism by which Rho regulates cytokinesis, cell motility, or smooth muscle contraction.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The small GTP-binding protein rac regulates growth factor-induced membrane ruffling.

              The function of rac, a ras-related GTP-binding protein, was investigated in fibroblasts by microinjection. In confluent serum-starved Swiss 3T3 cells, rac1 rapidly stimulated actin filament accumulation at the plasma membrane, forming membrane ruffles. Several growth factors and activated H-ras also induced membrane ruffling, and this response was prevented by a dominant inhibitory mutant rac protein, N17rac1. This suggests that endogenous rac proteins are required for growth factor-induced membrane ruffling. In addition to membrane ruffling, a later response to both rac1 microinjection and some growth factors was the formation of actin stress fibers, a process requiring endogenous rho proteins. Using N17rac1 we have shown that these growth factors act through rac to stimulate this rho-dependent response. We propose that rac and rho are essential components of signal transduction pathways linking growth factors to the organization of polymerized actin.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                29 June 1998
                : 141
                : 7
                : 1625-1636
                Affiliations
                [* ]Department of Pharmacology, Kyoto University Faculty of Medicine, Sakyo, Kyoto 606-8315, Japan; []Discovery Research, Yoshitomi Pharmaceutical Industries, Iruma, Saitama 358-0026, Japan; [§ ]Division of Cellular Biochemistry, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands; and []Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08855-1059
                Author notes

                Address all correspondence to Shuh Narumiya, Department of Pharmacology, Kyoto University Faculty of Medicine, Sakyo, Kyoto 606-8315, Japan. Tel.: (81) 75-753-4392. Fax: (81) 75-753-4693. E-mail: snaru@ 123456mfour.med.kyoto-u.ac.jp

                Article
                10.1083/jcb.141.7.1625
                2133015
                9647654
                e96b5759-cf57-4ae6-a6ad-e1c6fb2195ef
                Copyright @ 1998
                History
                : 25 February 1998
                : 14 May 1998
                Categories
                Articles

                Cell biology
                Cell biology

                Comments

                Comment on this article