12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Conditions associated with Clostridium sporogenes growth as a surrogate for Clostridium botulinum in nonthermally processed canned butter.

      Journal of dairy science
      Butter, microbiology, standards, Clostridium, growth & development, Clostridium botulinum, Emulsions, Food Quality, Food Technology, methods, Microscopy, Confocal

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The objective of this study was to better understand the effect of butter composition and emulsion structure on growth and survival of Clostridium sporogenes, used as a surrogate for C. botulinum in canned butter. The lack of a thermal process step in commercially available canned butter raises questions of potential safety, because it is hermetically sealed and generally exhibits anaerobic growth conditions, which are optimal for Clostridium botulinum growth. Without thermal processing, low-acid canned foods must have inhibitory factors present to prevent C. botulinum growth. Some potential intrinsic inhibitory factors, or hurdles, within butter include: reduced water activity, acidity in cultured products, elevated salt content, and the micro-droplet nature of the aqueous phase in the butter emulsion. It was hypothesized that a normal, intact butter emulsion would have sufficient hurdles to prevent C. botulinum growth, whereas a broken butter emulsion would result in a coalesced aqueous phase that would allow for C. botulinum growth. Batch-churned butter was inoculated with C. sporogenes; butter samples with varying salt contents (0, 0.8, 1.6, and 2.4% wt/wt NaCl) were prepared and stored in coated steel cans for varying times (1 or 2 wk) and temperatures (22 or 41°C) to determine temperature and emulsion structure effects on C. sporogenes growth. Samples stored at 41°C showed a significant increase in C. sporogenes growth compared with those stored at 22°C. Furthermore, NaCl addition was found to have a significant effect on C. sporogenes growth, with 0.8% NaCl promoting more growth than 0%, but with decreases in growth observed at 1.6 and 2.4%. Uninoculated control plates were also found to have bacterial growth; this growth was attributed to other anaerobic bacteria present within the cream. It was concluded that removal of the hurdle created by the micro-droplet size of the emulsion aqueous phase could result in C. botulinum growth even at elevated salt levels and, therefore, home preparation of canned butter is not advisable. It is also possible that commercially canned butter, if heat abused, could potentially allow for C. botulinum growth and, therefore, consumption is not recommended. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

          Related collections

          Author and article information

          Journal
          23453518
          10.3168/jds.2012-6209

          Chemistry
          Butter,microbiology,standards,Clostridium,growth & development,Clostridium botulinum,Emulsions,Food Quality,Food Technology,methods,Microscopy, Confocal

          Comments

          Comment on this article