21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inhibition of Bcl-xL prevents pro-death actions of ΔN-Bcl-xL at the mitochondrial inner membrane during glutamate excitotoxicity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          ABT-737 is a pharmacological inhibitor of the anti-apoptotic activity of B-cell lymphoma-extra large (Bcl-xL) protein; it promotes apoptosis of cancer cells by occupying the BH3-binding pocket. We have shown previously that ABT-737 lowers cell metabolic efficiency by inhibiting ATP synthase activity. However, we also found that ABT-737 protects rodent brain from ischemic injury in vivo by inhibiting formation of the pro-apoptotic, cleaved form of Bcl-xL, ΔN-Bcl-xL. We now report that a high concentration of ABT-737 (1  μM), or a more selective Bcl-xL inhibitor WEHI-539 (5  μM) enhances glutamate-induced neurotoxicity while a low concentration of ABT-737 (10 nM) or WEHI-539 (10 nM) is neuroprotective. High ABT-737 markedly increased ΔN-Bcl-xL formation, aggravated glutamate-induced death and resulted in the loss of mitochondrial membrane potential and decline in ATP production. Although the usual cause of death by ABT-737 is thought to be related to activation of Bax at the outer mitochondrial membrane due to sequestration of Bcl-xL, we now find that low ABT-737 not only prevents Bax activation, but it also inhibits the decline in mitochondrial potential produced by glutamate toxicity or by direct application of ΔN-Bcl-xL to mitochondria. Loss of mitochondrial inner membrane potential is also prevented by cyclosporine A, implicating the mitochondrial permeability transition pore in death aggravated by ΔN-Bcl-xL. In keeping with this, we find that glutamate/ΔN-Bcl-xL-induced neuronal death is attenuated by depletion of the ATP synthase c-subunit. C-subunit depletion prevented depolarization of mitochondrial membranes in ΔN-Bcl-xL expressing cells and substantially prevented the morphological change in neurites associated with glutamate/ΔN-Bcl-xL insult. Our findings suggest that low ABT-737 or WEHI-539 promotes survival during glutamate toxicity by preventing the effect of ΔN-Bcl-xL on mitochondrial inner membrane depolarization, highlighting ΔN-Bcl-xL as an important therapeutic target in injured brain.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins.

          Commitment of cells to apoptosis is governed largely by the interaction between members of the Bcl-2 protein family. Its three subfamilies have distinct roles: The BH3-only proteins trigger apoptosis by binding via their BH3 domain to prosurvival relatives, while the proapoptotic Bax and Bak have an essential downstream role involving permeabilization of organellar membranes and induction of caspase activation. We have investigated the regulation of Bak and find that, in healthy cells, Bak associates with Mcl-1 and Bcl-x(L) but surprisingly not Bcl-2, Bcl-w, or A1. These interactions require the Bak BH3 domain, which is also necessary for Bak dimerization and killing activity. When cytotoxic signals activate BH3-only proteins that can engage both Mcl-1 and Bcl-x(L) (such as Noxa plus Bad), Bak is displaced and induces cell death. Accordingly, the BH3-only protein Noxa could bind to Mcl-1, displace Bak, and promote Mcl-1 degradation, but Bak-mediated cell death also required neutralization of Bcl-x(L) by other BH3-only proteins. The results indicate that Bak is held in check solely by Mcl-1 and Bcl-x(L) and induces apoptosis only if freed from both. The finding that different prosurvival proteins have selective roles has notable implications for the design of anti-cancer drugs that target the Bcl-2 family.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            FireDock: a web server for fast interaction refinement in molecular docking†

            Structural details of protein–protein interactions are invaluable for understanding and deciphering biological mechanisms. Computational docking methods aim to predict the structure of a protein–protein complex given the structures of its single components. Protein flexibility and the absence of robust scoring functions pose a great challenge in the docking field. Due to these difficulties most of the docking methods involve a two-tier approach: coarse global search for feasible orientations that treats proteins as rigid bodies, followed by an accurate refinement stage that aims to introduce flexibility into the process. The FireDock web server, presented here, is the first web server for flexible refinement and scoring of protein–protein docking solutions. It includes optimization of side-chain conformations and rigid-body orientation and allows a high-throughput refinement. The server provides a user-friendly interface and a 3D visualization of the results. A docking protocol consisting of a global search by PatchDock and a refinement by FireDock was extensively tested. The protocol was successful in refining and scoring docking solution candidates for cases taken from docking benchmarks. We provide an option for using this protocol by automatic redirection of PatchDock candidate solutions to the FireDock web server for refinement. The FireDock web server is available at http://bioinfo3d.cs.tau.ac.il/FireDock/.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structure of Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis.

              Heterodimerization between members of the Bcl-2 family of proteins is a key event in the regulation of programmed cell death. The molecular basis for heterodimer formation was investigated by determination of the solution structure of a complex between the survival protein Bcl-xL and the death-promoting region of the Bcl-2-related protein Bak. The structure and binding affinities of mutant Bak peptides indicate that the Bak peptide adopts an amphipathic alpha helix that interacts with Bcl-xL through hydrophobic and electrostatic interactions. Mutations in full-length Bak that disrupt either type of interaction inhibit the ability of Bak to heterodimerize with Bcl-xL.
                Bookmark

                Author and article information

                Journal
                Cell Death Differ
                Cell Death Differ
                Cell Death and Differentiation
                Nature Publishing Group
                1350-9047
                1476-5403
                November 2017
                04 August 2017
                1 November 2017
                : 24
                : 11
                : 1963-1974
                Affiliations
                [1 ]Department Internal Medicine, Section of Endocrinology, Yale University School of Medicine , New Haven, CT 06511, USA
                [2 ]Department Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine , 685 W. Baltimore Street, Baltimore, MD 21201, USA
                [3 ]Division of Brain Sciences, Department of Medicine, Imperial College, London , DuCane Road, London W12 0NN, UK
                Author notes
                [* ]Department Internal Medicine, Section of Endocrinology, Yale University School of Medicine , PO Box 208020, New Haven, CT 06520, USA. Tel: 203 785 3087; Fax: 203 785 6015; E-mail: Elizabeth.Jonas@ 123456yale.edu
                Author information
                http://orcid.org/0000-0002-1361-6272
                Article
                cdd2017123
                10.1038/cdd.2017.123
                5635221
                28777375
                e98adf75-22e0-4147-afdc-f616d9cdec69
                Copyright © 2017 The Author(s)

                This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/

                History
                : 18 July 2016
                : 01 June 2017
                : 05 June 2017
                Categories
                Original Paper

                Cell biology
                Cell biology

                Comments

                Comment on this article