9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Study on the third and second-order nonlinear optical properties of GeS(2)-Ga(2)S<suv>3</suv>-AgCl chalcohalide glasses.

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Third-order optical nonlinearities, chi((3)) of GeS(2)-Ga(2)S(3)-AgCl chalcohalide glasses have been studied systematically utilizing the femtosecond time-resolved optical Kerr effect (OKE) technique at 820nm, showing that the value of chi((3)) enhances with increasing atomic ratio of (S+Cl/2)/(Ge+Ga). From the compositional dependence of glass structure by Raman spectra, a strong dependence of chi;(3) upon glass structure has been found, i.e. compared with [Cl(x)S(3-x)Ge(Ga)-Ge(Ga)S(3-x)Cl(x)] ethane-like s.u. as the structural defectiveness, [Ge(Ga)S(4-x)Cl(x)] mixed tetrahedra make greater contribution to the enhancement of chi((3)). The maximum chi<sp>(3)</sp> among the present glasses is as large as 5.26x10(-13)esu (A1 (80GeS(2)-10Ga(2)S(3-) 10AgCl)), and the nonlinear refractive index (n2) of A1 glass is also up to 4.60x10(-15) cm(2)/W. In addition, using Maker fringe technique, SHG was observed in the representative A1 glass poled by electron beam (25 kV, 25 nA, 15 min), and the second-order optical nonlinear susceptibility is estimated to be greater than 6.1 pm/V. There was no evident structural change detected in the as-prepared and after irradiated A1 glass by the Raman spectra, and maybe only electronic transition and distortion of electron cloud occurred in the glasses. The large third/second-order optical nonlinearities have made these GeS(2)-Ga(2)S(3)-AgCl chalcohalide glasses as promising materials applied in photoelectric fields.

          Related collections

          Author and article information

          Journal
          Opt Express
          Optics express
          1094-4087
          1094-4087
          Mar 05 2007
          : 15
          : 5
          Article
          130596
          19532477
          e999a9c9-73ac-437b-bdd2-fa9876067c76
          History

          Comments

          Comment on this article