230
views
0
recommends
+1 Recommend
0 collections
    19
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Disease-causing mutations in Parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Parkin catalyzes mitochondrial ubiquitination, recruiting autophagic components that clear damaged mitochondria. Defects in this pathway are implicated in Parkinson's disease.

          Abstract

          Mutations in parkin, a ubiquitin ligase, cause early-onset familial Parkinson's disease (AR-JP). How parkin suppresses Parkinsonism remains unknown. Parkin was recently shown to promote the clearance of impaired mitochondria by autophagy, termed mitophagy. Here, we show that parkin promotes mitophagy by catalyzing mitochondrial ubiquitination, which in turn recruits ubiquitin-binding autophagic components, HDAC6 and p62, leading to mitochondrial clearance. During the process, juxtanuclear mitochondrial aggregates resembling a protein aggregate-induced aggresome are formed. The formation of these “mito-aggresome” structures requires microtubule motor-dependent transport and is essential for efficient mitophagy. Importantly, we show that AR-JP–causing parkin mutations are defective in supporting mitophagy due to distinct defects at recognition, transportation, or ubiquitination of impaired mitochondria, thereby implicating mitophagy defects in the development of Parkinsonism. Our results show that impaired mitochondria and protein aggregates are processed by common ubiquitin-selective autophagy machinery connected to the aggresomal pathway, thus identifying a mechanistic basis for the prevalence of these toxic entities in Parkinson's disease.

          Related collections

          Most cited references13

          • Record: found
          • Abstract: found
          • Article: not found

          Association between early-onset Parkinson's disease and mutations in the parkin gene.

          Mutations in the parkin gene have recently been identified in patients with early-onset Parkinson's disease, but the frequency of the mutations and the associated phenotype have not been assessed in a large series of patients. We studied 73 families in which at least one of the affected family members was affected at or before the age of 45 years and had parents who were not affected, as well as 100 patients with isolated Parkinson's disease that began at or before the age of 45 years. All subjects were screened for mutations in the parkin gene with use of a semiquantitative polymerase-chain-reaction assay that simultaneously amplified several exons. We sequenced the coding exons in a subgroup of patients. We also compared the clinical features of patients with parkin mutations and those without mutations. Among the families with early-onset Parkinson's disease, 36 (49 percent) had parkin mutations. The age at onset ranged from 7 to 58 years. Among the patients with isolated Parkinson's disease, mutations were detected in 10 of 13 patients (77 percent) with an age at onset of 20 years or younger, but in only 2 of 64 patients (3 percent) with an age at onset of more than 30 years. The mean (+/-SD) age at onset in the patients with parkin mutations was younger than that in those without mutations (32+/-11 vs. 42+/-11 years, P<0.001), and they were more likely to have symmetric involvement and dystonia at onset, to have hyperreflexia at onset or later, to have a good response to levodopa therapy, and to have levodopa-induced dyskinesias during treatment. Nineteen different rearrangements of exons (deletions and multiplications) and 16 different point mutations were detected. Mutations in the parkin gene are a major cause of early-onset autosomal recessive familial Parkinson's disease and isolated juvenile-onset Parkinson's disease (at or before the age of 20 years). Accurate diagnosis of these cases cannot be based only on the clinical manifestations of the disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy.

            Autophagy is primarily considered a non-selective degradation process induced by starvation. Nutrient-independent basal autophagy, in contrast, imposes intracellular QC by selective disposal of aberrant protein aggregates and damaged organelles, a process critical for suppressing neurodegenerative diseases. The molecular mechanism that distinguishes these two fundamental autophagic responses, however, remains mysterious. Here, we identify the ubiquitin-binding deacetylase, histone deacetylase-6 (HDAC6), as a central component of basal autophagy that targets protein aggregates and damaged mitochondria. Surprisingly, HDAC6 is not required for autophagy activation; rather, it controls the fusion of autophagosomes to lysosomes. HDAC6 promotes autophagy by recruiting a cortactin-dependent, actin-remodelling machinery, which in turn assembles an F-actin network that stimulates autophagosome-lysosome fusion and substrate degradation. Indeed, HDAC6 deficiency leads to autophagosome maturation failure, protein aggregate build-up, and neurodegeneration. Remarkably, HDAC6 and F-actin assembly are completely dispensable for starvation-induced autophagy, uncovering the fundamental difference of these autophagic modes. Our study identifies HDAC6 and the actin cytoskeleton as critical components that define QC autophagy and uncovers a novel regulation of autophagy at the level of autophagosome-lysosome fusion.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Expanding insights of mitochondrial dysfunction in Parkinson's disease.

              The quest to disentangle the aetiopathogenesis of Parkinson's disease has been heavily influenced by the genes associated with the disease. The alpha-synuclein-centric theory of protein aggregation with the adjunct of parkin-driven proteasome deregulation has, in recent years, been complemented by the discovery and increasing knowledge of the functions of DJ1, PINK1 and OMI/HTRA2, which are all associated with the mitochondria and have been implicated in cellular protection against oxidative damage. We critically review how these genes fit into and enhance our understanding of the role of mitochondrial dysfunction in Parkinson's disease, and consider how oxidative stress might be a potential unifying factor in the aetiopathogenesis of the disease.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                J. Cell Biol
                jcb
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                17 May 2010
                : 189
                : 4
                : 671-679
                Affiliations
                [1 ]Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710
                [2 ]Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105
                [3 ]National Neuroscience Institute, Singapore 308433
                Author notes
                Correspondence to Tso-Pang Yao: yao00001@ 123456mc.duke.edu
                Article
                201001039
                10.1083/jcb.201001039
                2872903
                20457763
                e9a09a73-e45a-467d-ada1-6394dd554bcb
                © 2010 Lee et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 8 January 2010
                : 16 April 2010
                Categories
                Research Articles
                Report

                Cell biology
                Cell biology

                Comments

                Comment on this article