10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Phylogenetic relationships within the leaf-mining flies (Diptera: Agromyzidae) inferred from sequence data from multiple genes.

      Molecular Phylogenetics and Evolution
      Animals, Diptera, genetics, physiology, Evolution, Molecular, Feeding Behavior, Genes, Insect, Host-Parasite Interactions, Phylogeny, Plant Leaves, parasitology, Sequence Analysis, DNA

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The leaf-mining flies (Diptera: Agromyzidae) are a diverse group whose larvae feed internally in leaves, stems, flowers, seeds, and roots of a wide variety of plant hosts. The systematics of agromyzids has remained poorly known due to their small size and morphological homogeneity. We investigated the phylogenetic relationships among genera within the Agromyzidae using parsimony and Bayesian analyses of 2965 bp of DNA sequence data from the mitochondrial COI gene, the nuclear ribosomal 28S gene, and the single copy nuclear CAD gene. We included 86 species in 21 genera, including all but a few small genera, and spanning the diversity within the family. The results from parsimony and Bayesian analyses were largely similar, with major groupings of genera in common. Specifically, both analyses recovered a monophyletic Phytomyzinae and a monophyletic Agromyzinae. Within the subfamilies, genera found to be monophyletic given our sampling include Agromyza, Amauromyza, Calycomyza, Cerodontha, Liriomyza, Melanagromyza, Metopomyza, Nemorimyza, Phytobia, and Pseudonapomyza. Several genera were found to be polyphyletic or paraphyletic including Aulagromyza, Chromatomyia, Phytoliriomyza, Phytomyza, and Ophiomyia. We evaluate our findings and discuss host-use evolution in light of current agromyzid taxonomy and two recent hypotheses of relationships based on morphological data.

          Related collections

          Author and article information

          Comments

          Comment on this article