23
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Submit your digital health research with an established publisher
      - celebrating 25 years of open access

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Efficacy of an Artificial Intelligence App (Aysa) in Dermatological Diagnosis: Cross-Sectional Analysis

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Dermatology is an ideal specialty for artificial intelligence (AI)–driven image recognition to improve diagnostic accuracy and patient care. Lack of dermatologists in many parts of the world and the high frequency of cutaneous disorders and malignancies highlight the increasing need for AI-aided diagnosis. Although AI-based applications for the identification of dermatological conditions are widely available, research assessing their reliability and accuracy is lacking.

          Objective

          The aim of this study was to analyze the efficacy of the Aysa AI app as a preliminary diagnostic tool for various dermatological conditions in a semiurban town in India.

          Methods

          This observational cross-sectional study included patients over the age of 2 years who visited the dermatology clinic. Images of lesions from individuals with various skin disorders were uploaded to the app after obtaining informed consent. The app was used to make a patient profile, identify lesion morphology, plot the location on a human model, and answer questions regarding duration and symptoms. The app presented eight differential diagnoses, which were compared with the clinical diagnosis. The model’s performance was evaluated using sensitivity, specificity, accuracy, positive predictive value, negative predictive value, and F 1-score. Comparison of categorical variables was performed with the χ 2 test and statistical significance was considered at P<.05.

          Results

          A total of 700 patients were part of the study. A wide variety of skin conditions were grouped into 12 categories. The AI model had a mean top-1 sensitivity of 71% (95% CI 61.5%-74.3%), top-3 sensitivity of 86.1% (95% CI 83.4%-88.6%), and all-8 sensitivity of 95.1% (95% CI 93.3%-96.6%). The top-1 sensitivities for diagnosis of skin infestations, disorders of keratinization, other inflammatory conditions, and bacterial infections were 85.7%, 85.7%, 82.7%, and 81.8%, respectively. In the case of photodermatoses and malignant tumors, the top-1 sensitivities were 33.3% and 10%, respectively. Each category had a strong correlation between the clinical diagnosis and the probable diagnoses ( P<.001).

          Conclusions

          The Aysa app showed promising results in identifying most dermatoses.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Dermatologist-level classification of skin cancer with deep neural networks

          Skin cancer, the most common human malignancy, is primarily diagnosed visually, beginning with an initial clinical screening and followed potentially by dermoscopic analysis, a biopsy and histopathological examination. Automated classification of skin lesions using images is a challenging task owing to the fine-grained variability in the appearance of skin lesions. Deep convolutional neural networks (CNNs) show potential for general and highly variable tasks across many fine-grained object categories. Here we demonstrate classification of skin lesions using a single CNN, trained end-to-end from images directly, using only pixels and disease labels as inputs. We train a CNN using a dataset of 129,450 clinical images—two orders of magnitude larger than previous datasets—consisting of 2,032 different diseases. We test its performance against 21 board-certified dermatologists on biopsy-proven clinical images with two critical binary classification use cases: keratinocyte carcinomas versus benign seborrheic keratoses; and malignant melanomas versus benign nevi. The first case represents the identification of the most common cancers, the second represents the identification of the deadliest skin cancer. The CNN achieves performance on par with all tested experts across both tasks, demonstrating an artificial intelligence capable of classifying skin cancer with a level of competence comparable to dermatologists. Outfitted with deep neural networks, mobile devices can potentially extend the reach of dermatologists outside of the clinic. It is projected that 6.3 billion smartphone subscriptions will exist by the year 2021 (ref. 13) and can therefore potentially provide low-cost universal access to vital diagnostic care.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): the TRIPOD statement.

            Prediction models are developed to aid health care providers in estimating the probability or risk that a specific disease or condition is present (diagnostic models) or that a specific event will occur in the future (prognostic models), to inform their decision making. However, the overwhelming evidence shows that the quality of reporting of prediction model studies is poor. Only with full and clear reporting of information on all aspects of a prediction model can risk of bias and potential usefulness of prediction models be adequately assessed. The Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) Initiative developed a set of recommendations for the reporting of studies developing, validating, or updating a prediction model, whether for diagnostic or prognostic purposes. This article describes how the TRIPOD Statement was developed. An extensive list of items based on a review of the literature was created, which was reduced after a Web-based survey and revised during a 3-day meeting in June 2011 with methodologists, health care professionals, and journal editors. The list was refined during several meetings of the steering group and in e-mail discussions with the wider group of TRIPOD contributors. The resulting TRIPOD Statement is a checklist of 22 items, deemed essential for transparent reporting of a prediction model study. The TRIPOD Statement aims to improve the transparency of the reporting of a prediction model study regardless of the study methods used. The TRIPOD Statement is best used in conjunction with the TRIPOD explanation and elaboration document. To aid the editorial process and readers of prediction model studies, it is recommended that authors include a completed checklist in their submission (also available at www.tripod-statement.org).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Classification of the Clinical Images for Benign and Malignant Cutaneous Tumors Using a Deep Learning Algorithm

              We tested the use of a deep learning algorithm to classify the clinical images of 12 skin diseases-basal cell carcinoma, squamous cell carcinoma, intraepithelial carcinoma, actinic keratosis, seborrheic keratosis, malignant melanoma, melanocytic nevus, lentigo, pyogenic granuloma, hemangioma, dermatofibroma, and wart. The convolutional neural network (Microsoft ResNet-152 model; Microsoft Research Asia, Beijing, China) was fine-tuned with images from the training portion of the Asan dataset, MED-NODE dataset, and atlas site images (19,398 images in total). The trained model was validated with the testing portion of the Asan, Hallym and Edinburgh datasets. With the Asan dataset, the area under the curve for the diagnosis of basal cell carcinoma, squamous cell carcinoma, intraepithelial carcinoma, and melanoma was 0.96 ± 0.01, 0.83 ± 0.01, 0.82 ± 0.02, and 0.96 ± 0.00, respectively. With the Edinburgh dataset, the area under the curve for the corresponding diseases was 0.90 ± 0.01, 0.91 ± 0.01, 0.83 ± 0.01, and 0.88 ± 0.01, respectively. With the Hallym dataset, the sensitivity for basal cell carcinoma diagnosis was 87.1% ± 6.0%. The tested algorithm performance with 480 Asan and Edinburgh images was comparable to that of 16 dermatologists. To improve the performance of convolutional neural network, additional images with a broader range of ages and ethnicities should be collected.
                Bookmark

                Author and article information

                Contributors
                Journal
                JMIR Dermatol
                JMIR Dermatol
                JDERM
                JMIR Dermatology
                JMIR Publications (Toronto, Canada )
                2562-0959
                2024
                2 July 2024
                : 7
                : e48811
                Affiliations
                [1 ] Department of Dermatology, Venereology and Leprosy Shri B M Patil Medical College, Hospital and Research Centre BLDE (Deemed to be) University Vijayapura, Karnataka India
                Author notes
                Corresponding Author: Arun C Inamadar aruninamadar@ 123456gmail.com
                Author information
                https://orcid.org/0000-0002-1798-2202
                https://orcid.org/0000-0003-0796-1421
                https://orcid.org/0009-0005-4514-8548
                https://orcid.org/0000-0002-4840-5352
                https://orcid.org/0000-0002-8877-3723
                Article
                v7i1e48811
                10.2196/48811
                11252620
                38954807
                e9a98ede-5ae9-42d1-bc04-df81293237b9
                ©Shiva Shankar Marri, Warood Albadri, Mohammed Salman Hyder, Ajit B Janagond, Arun C Inamadar. Originally published in JMIR Dermatology (http://derma.jmir.org), 02.07.2024.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Dermatology, is properly cited. The complete bibliographic information, a link to the original publication on http://derma.jmir.org, as well as this copyright and license information must be included.

                History
                : 8 May 2023
                : 19 July 2023
                : 12 August 2023
                : 8 June 2024
                Categories
                Original Paper
                Original Paper

                artificial intelligence,ai,ai-aided diagnosis,dermatology,mobile app,application,neural network,machine learning,dermatological,skin,computer-aided diagnosis,diagnostic,imaging,lesion

                Comments

                Comment on this article