24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      (+/-)-[3H]Epinephrine and (-)[3H]dihydroalprenolol binding to beta1- and beta2-noradrenergic receptors in brain, heart, and lung membranes.

      , ,
      The Journal of biological chemistry

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          (+/-)-[3H]Epinephrine binds to beta-receptors in calf cerebellar and rat lung membranes in the presence of 1.0 mM pyrocatechol and 1.0 microM phentolamine, with dissociation constants at 4 degrees C of 11 nM and 24 nM, respectively. (+/-)-[3H]Epinephrine associates to equilibrium within 20 min in both tissues, and over 50% of the binding is rapidly dissociable. Inhibition of binding by agonists and antagonists is highly stereoselective, and the structure-activity relationships of adrenergic agents in inhibiting (+/-)-[3H]epinephrine binding suggest an interaction with beta2 type noradrenergic receptors. (-)-Isoproterenol has an apparent Ki of 2 nM, (-)-epinephrine is 1.5 to 3 times weaker, and (-)-norepinephrine is 30 to 60 times weaker. Salbutamol and terbutaline, selective beta2-agonists, are potent inhibitors of binding, as are several nonspecific antagonists. Properties of the sites labeled by (+/-)-[3H]epinephrine in calf cerebellum and rat lung are closely similar. (-)-[3H]Dihydroalprenolol binding in calf cerebellum and rat lung also shows beta2 characteristics. Antagonists have similar potencies in inhibiting (-)-[3H]dihydroalprenolol and (+/-)-[3H]epinephrine binding in both tissues, but agonists are in general more potent inhibitors of (+/-)-[3H]epinephrine. Sodium and lithium selectively lower the affinity of (+/-)-[3H]epinephrine at its binding sites and the affinities of agonists, but not antagonists, at the (-)-[3H]dihydroalprenolol site. Specific (+/-)-[3H]epinephrine binding was not detectable in calf cortex and rat heart, where (-)-[3H]dihydroalprenolol binding suggests a beta1-receptor. A physiological significance of (+/-)-[3H]epinephrine binding is suggested by the strong correlation for agonists and antagonists between affinities in inhibiting binding, and in stimulating or inhibiting a beta-receptor-coupled adenylate cyclase in frog erythrocytes.

          Related collections

          Author and article information

          Journal
          J. Biol. Chem.
          The Journal of biological chemistry
          0021-9258
          0021-9258
          Jul 25 1978
          : 253
          : 14
          Article
          209026
          e9aa590f-f074-42cf-9ec9-f357fd04667c
          History

          Comments

          Comment on this article