6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      BIN1 is a novel MYC-interacting protein with features of a tumour suppressor.

      Nature genetics
      Adaptor Proteins, Signal Transducing, Amino Acid Sequence, Animals, Base Sequence, Carrier Proteins, genetics, Cell Division, Cell Line, Cell Transformation, Neoplastic, DNA Primers, Fungal Proteins, Genes, Tumor Suppressor, Genes, myc, HeLa Cells, Humans, Microfilament Proteins, Molecular Sequence Data, Nerve Tissue Proteins, Nuclear Proteins, Saccharomyces cerevisiae Proteins, Transformation, Genetic, Tumor Cells, Cultured, Tumor Suppressor Proteins

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          BIN1 is a novel protein that interacts with the functionally critical Myc box regions at the N terminus of the MYC oncoprotein. BIN1 is structurally related to amphiphysin, a breast cancer-associated autoimmune antigen, and RVS167, a negative regulator of the yeast cell cycle, suggesting roles in malignancy and cell cycle control. Consistent with this likelihood, BIN1 inhibited malignant cell transformation by MYC. Although BIN1 is expressed in many normal cells, its levels were greatly reduced or undetectable in 14/27 carcinoma cell lines and 3/6 primary breast tumours. Deficits were functionally significant because ectopic expression of BIN1 inhibited the growth of tumour cells lacking endogenous message. We conclude that BIN1 is an MYC-interacting protein with features of a tumour suppressor.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          High-efficiency transformation of mammalian cells by plasmid DNA.

          We describe a simple calcium phosphate transfection protocol and neo marker vectors that achieve highly efficient transformation of mammalian cells. In this protocol, the calcium phosphate-DNA complex is formed gradually in the medium during incubation with cells and precipitates on the cells. The crucial factors for obtaining efficient transformation are the pH (6.95) of the buffer used for the calcium phosphate precipitation, the CO2 level (3%) during the incubation of the DNA with the cells, and the amount (20 to 30 micrograms) and the form (circular) of DNA. In sharp contrast to the results with circular DNA, linear DNA is almost inactive. Under these conditions, 50% of mouse L(A9) cells can be stably transformed with pcDneo, a simian virus 40-based neo (neomycin resistance) marker vector. The NIH3T3, C127, CV1, BHK, CHO, and HeLa cell lines were transformed at efficiencies of 10 to 50% with this vector and the neo marker-incorporated pcD vectors that were used for the construction and transduction of cDNA expression libraries as well as for the expression of cloned cDNA in mammalian cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins.

            Two cDNAs were isolated whose dimerized products bind specifically to a DNA sequence, kappa E2, located in the immunoglobulin kappa chain enhancer. Both cDNAs share a region of extensive identity to the Drosophila daughterless gene and obvious similarity to a segment in three myc proteins, MyoD, and members of the Drosophila achaete-scute and twist gene family. The homologous regions have the potential to form two amphipathic helices separated by an intervening loop. Remarkable is the stringent conservation of hydrophobic residues present in both helices. We demonstrate that this new motif plays a crucial role in both dimerization and DNA binding.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mammalian Ras interacts directly with the serine/threonine kinase Raf.

              We have identified proteins that interact with H-Ras using a two hybrid system screen of a mouse cDNA library. Approximately 50% of the clones identified encoded portions of the c-Raf and A-Raf serine/threonine kinases. Overlaps among these clones define a conserved 81 residue region of the N-terminus of Raf as the Ras interaction region. We show that Raf interacts with wild-type and activated Ras, but not with an effector domain mutant of Ras or with a dominant-interfering Ras mutant. Using purified bacterially expressed fusion proteins, we show, furthermore, that Ras and the N-terminal region of Raf associate directly in vitro and that this interaction is dependent on GTP bound to Ras.
                Bookmark

                Author and article information

                Comments

                Comment on this article