0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A 1D–3D Hybrid Model of Patient-Specific Coronary Hemodynamics

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Fractional flow reserve versus angiography for guiding percutaneous coronary intervention.

          In patients with multivessel coronary artery disease who are undergoing percutaneous coronary intervention (PCI), coronary angiography is the standard method for guiding the placement of the stent. It is unclear whether routine measurement of fractional flow reserve (FFR; the ratio of maximal blood flow in a stenotic artery to normal maximal flow), in addition to angiography, improves outcomes. In 20 medical centers in the United States and Europe, we randomly assigned 1005 patients with multivessel coronary artery disease to undergo PCI with implantation of drug-eluting stents guided by angiography alone or guided by FFR measurements in addition to angiography. Before randomization, lesions requiring PCI were identified on the basis of their angiographic appearance. Patients assigned to angiography-guided PCI underwent stenting of all indicated lesions, whereas those assigned to FFR-guided PCI underwent stenting of indicated lesions only if the FFR was 0.80 or less. The primary end point was the rate of death, nonfatal myocardial infarction, and repeat revascularization at 1 year. The mean (+/-SD) number of indicated lesions per patient was 2.7+/-0.9 in the angiography group and 2.8+/-1.0 in the FFR group (P=0.34). The number of stents used per patient was 2.7+/-1.2 and 1.9+/-1.3, respectively (P<0.001). The 1-year event rate was 18.3% (91 patients) in the angiography group and 13.2% (67 patients) in the FFR group (P=0.02). Seventy-eight percent of the patients in the angiography group were free from angina at 1 year, as compared with 81% of patients in the FFR group (P=0.20). Routine measurement of FFR in patients with multivessel coronary artery disease who are undergoing PCI with drug-eluting stents significantly reduces the rate of the composite end point of death, nonfatal myocardial infarction, and repeat revascularization at 1 year. (ClinicalTrials.gov number, NCT00267774.) 2009 Massachusetts Medical Society
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Patient-specific modeling of blood flow and pressure in human coronary arteries.

            Coronary flow is different from the flow in other parts of the arterial system because it is influenced by the contraction and relaxation of the heart. To model coronary flow realistically, the compressive force of the heart acting on the coronary vessels needs to be included. In this study, we developed a method that predicts coronary flow and pressure of three-dimensional epicardial coronary arteries by considering models of the heart and arterial system and the interactions between the two models. For each coronary outlet, a lumped parameter coronary vascular bed model was assigned to represent the impedance of the downstream coronary vascular networks absent in the computational domain. The intramyocardial pressure was represented with either the left or right ventricular pressure depending on the location of the coronary arteries. The left and right ventricular pressure were solved from the lumped parameter heart models coupled to a closed loop system comprising a three-dimensional model of the aorta, three-element Windkessel models of the rest of the systemic circulation and the pulmonary circulation, and lumped parameter models for the left and right sides of the heart. The computed coronary flow and pressure and the aortic flow and pressure waveforms were realistic as compared to literature data.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effects of adenosine on human coronary arterial circulation.

              Adenosine is a potent vasodilator used extensively to study the coronary circulation of animals. Its use in humans, however, has been hampered by lack of knowledge about its effects on the human coronary circulation and by concern about its safety. We investigated in humans the effects of adenosine, administered by intracoronary bolus (2-16 micrograms), intracoronary infusion (10-240 micrograms/min), or intravenous infusion (35-140 micrograms/kg/min) on coronary and systemic hemodynamics and the electrocardiogram. Coronary blood flow velocity (CBFV) was measured with a 3F coronary Doppler catheter. The maximal CBFV was determined with intracoronary papaverine (4.5 +/- 0.2.resting CBFV). In normal left coronary arteries (n = 20), 16-micrograms boluses of adenosine caused coronary hyperemia similar to that caused by papaverine (4.6 +/- 0.7.resting CBFV). In the right coronary artery (n = 5), 12-micrograms boluses caused maximal hyperemia (4.4 +/- 1.0.resting CBFV). Intracoronary boluses caused a small, brief decrease in arterial pressure (similar to that caused by papaverine) and no changes in heart rate or in the electrocardiogram. The duration of hyperemia was much shorter after adenosine than after papaverine administration. Intracoronary infusions of 80 micrograms/min or more into the left coronary artery (n = 6) also caused maximal hyperemia (4.4 +/- 0.1.resting CBFV), and doses up to 240 micrograms/min caused a minimal decrease in arterial pressure (-6 +/- 2 mm Hg) and no significant change in heart rate or in electrocardiographic variables. Intravenous infusions in normal patients (n = 25) at 140 micrograms/kg/min caused coronary vasodilation similar to that caused by papaverine in 84% of patients (4.4 +/- 0.9.resting CBFV). At submaximal infusion rates, however, CBFV often fluctuated widely. During the 140-micrograms/kg/min infusion, arterial pressure decreased 6 +/- 7 mm Hg, and heart rate increased 24 +/- 14 beats/min. One patient developed 1 cycle of 2:1 atrioventricular block, but otherwise, the electrocardiogram did not change. In eight patients with microvascular vasodilator dysfunction (delta CBFV, less than 3.5 peak/resting velocity after a maximally vasodilating dose of intracoronary papaverine), the dose-response characteristics to intracoronary boluses and intravenous infusions of adenosine were similar to those found in normal patients.(ABSTRACT TRUNCATED AT 400 WORDS)
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Cardiovascular Engineering and Technology
                Cardiovasc Eng Tech
                Springer Science and Business Media LLC
                1869-408X
                1869-4098
                April 2022
                September 30 2021
                April 2022
                : 13
                : 2
                : 331-342
                Article
                10.1007/s13239-021-00580-5
                34591275
                e9b95b80-51a5-4f3b-a5a6-e816fd16333e
                © 2022

                https://www.springer.com/tdm

                https://www.springer.com/tdm

                History

                Comments

                Comment on this article