12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Reductions in bone turnover, mineral, and structure associated with mechanical properties of lumbar vertebra and femur in glucocorticoid-treated growing minipigs

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The present study was designed to determine the effects of glucocorticoid (GC) on bone turnover, minerals, structure, and bone mechanical properties in minipigs. Six 8-month-old Göttingen minipigs were subcutaneously injected with prednisolone (PN, 0.5 mg/kg body wt (BW)/day, 5 days/week for 26 weeks (Group GC)), 6 were treated with vehicle alone (Group VC), and 4 were sacrificed at start of the study for baseline controls (Group BC). The increase in BW was similar in all groups. PN significantly reduced serum osteocalcin and urinary type-1 collagen N-telopeptide levels at 13 weeks and thereafter, compared with baseline and control, and also reduced serum bone specific alkaline phosphatase levels relative to baseline. At 26 weeks, the longitudinal axis of the lumbar bone and length of femur were smaller in Group GC than Group VC. The total cross-sectional area of femur, but not the lumbar bone, in Group GC was significantly different from Group VC. BMD of the femur, but not L2, measured by DXA, was lower in Group GC than in Groups BC and VC. The cortical shell structure measured by 2D-micro-CT deteriorated and age-dependent increases in trabecular bone structure 3D micro-CT were reduced by PN. PN also caused deterioration of the cortical structure of the mid-femur. In L2 and femur, PN significantly reduced the ultimate load and maximum absorption energy of the femur and L2 compared with Group VC. The structural modulus in Group GC was lower than in Group BC. Regression analyses revealed that bone minerals, bone structure, and chemical markers correlated with mechanical properties of L2 and mid-femur. Our results indicate that PN reduced systemic bone formation and resorption and suppressed the age-dependent increases in bone minerals, structure, and mechanical properties of L2 and mid-femur. Reduced bone turnover seemed to be associated with a reduction in mechanical properties. The growing minipig could be a suitable model of GCs-induced osteoporosis in humans.

          Related collections

          Author and article information

          Journal
          Bone
          Bone
          Elsevier BV
          87563282
          November 2003
          November 2003
          : 33
          : 5
          : 779-787
          Article
          10.1016/S8756-3282(03)00263-1
          14623053
          e9bc01ee-9da7-4034-b96d-9f348a9b5745
          © 2003

          https://www.elsevier.com/tdm/userlicense/1.0/

          History

          Comments

          Comment on this article