Blog
About

1
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Nuclear Medicine Procedures for the Diagnosis of Acute and Chronic Renal Failure

      , ,

      Nephron Clinical Practice

      S. Karger AG

      Radiotracer, Renal scintigraphy, Renal failure

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The focus of this review is on the current role of nuclear imaging studies in the clinical evaluation of patients with acute and chronic renal failure. In this setting nuclear imaging has two roles: diagnostic and prognostic, indicating that these methods are an essential component in the evaluation of renal diseases. The functional assessment of the kidney by nuclear medicine procedures is based on the use of radioisotopes bound to non-metabolized molecules with known pharmacokinetics. Renal scintigraphy is usually applied for the assessment of renal function expressed as glomerular filtration rate, effective renal plasma flow or more generally kidney perfusion. Newer methods rely on positron emission tomography, which allows the generation of images with higher resolution and absolute quantitation of biological processes such as transport activities, enzyme activities or angiotensin receptors.

          Related collections

          Most cited references 12

          • Record: found
          • Abstract: found
          • Article: not found

          [18F]Fluoroazomycinarabinofuranoside (18FAZA) and [18F]Fluoromisonidazole (18FMISO): a comparative study of their selective uptake in hypoxic cells and PET imaging in experimental rat tumors.

          The present study compares the uptake of [(18)F]Fluoroazomycinarabinofuranoside ((18)FAZA), a recently developed hypoxia tracer for PET imaging of tissue hypoxia, with an established tracer [(18)F]Fluoromisonidazole ((18)FMISO) both in vitro, using Walker 256 rat carcinosarcoma cells, and in vivo in experimental rat tumors eleven to twelve days after tumor cell implantation. In vitro studies indicated that hypoxia-selective uptake of both (18)FAZA and (18)FMISO in tumor cells, 20 and 100 minutes post-incubation was of the same magnitude (20 min: 1.24 +/- 0.4% ((18)FAZA); 1.19 +/- 0.7% ((18)FMISO); 100 min: 3.6 +/- 1.6% ((18)FAZA); 3.3 +/- 1.7% ((18)FMISO)). PET imaging reflected a similar radiotracer distribution in rat tumors for (18)FAZA and (18)FMISO one h after radiotracer injection. The concentration of (18)FAZA in the tumors as measured by PET, however, was lower in comparison to (18)FMISO (SUV(FAZA) = 0.61 +/- 0.2 vs. SUV(FMISO) = 0.92 +/- 0.3, p < 0.05) although the tumor to muscle ratios for (18)FAZA and (18)FMISO did not differ in the PET images that were obtained after one h (SUV(FAZA) = 2.5 +/- 0.5 vs. SUV(FMISO) = 2.9 +/- 0.7). A comparison of PET data three h post-injection (SUV(FAZA) = 3.0 +/- 0.5 vs. SUV(FMISO) = 4.6 +/- 1.8, p < 0.05) demonstrated a lower (18)FAZA uptake that indicates a lower sensitivity of (18)FAZA in comparison to (18)FMISO in detecting hypoxic regions at a longer time in this animal model. However, these data also show a faster elimination of (18)FAZA from blood, viscera and muscle tissue, via the renal system. This advantage of a faster reduction of unspecific binding, in light of similar or marginally lower tumor uptake, warrants further investigation of (18)FAZA as a marker of regional hypoxia in tumors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cellular responses to hypoxia after renal segmental infarction.

            Hypoxia is believed to play an important role in the pathogenesis of acute and chronic kidney disease. However, the impact of low oxygen tensions on cellular functions in the kidney and potential adaptive responses are poorly understood. In order to assess the effects of regional hypoxia, we induced large segmental renal infarcts in rats by renal artery branch ligation to create an oxygen gradient vertical to the corticomedullary axis and studied the effects on cell morphology, the induction of hypoxia-inducible transcription factors (HIF), the expression of HIF target genes, and cell proliferation. Pimonidazol protein adduct immunohistochemistry, a marker for severe tissue hypoxia, verified a continuous area of hypoxic renal tissue extending from the cortex to the papilla, in which tubular necrosis developed subsequently. Within this area local sparing of pimonidazol staining and tissue preservation was found around arcuate veins, indicating regional oxygen supply via diffusion from venous blood. HIF-1alpha was up-regulated within 1 hour and for up to 7 days predominantly in the border zone of the infarct in tubular cells, glomerular cells, resident interstitial cells, capillary endothelial cells, and infiltrating macrophages. HIF-2alpha expression was less prominent and confined to resident and infiltrating peritubular cells in the cortex. HIF expression was colocalized with regional up-regulation of the hypoxia-inducible genes heme oxygenase-1 and vascular endothelial growth factor (VEGF), and was followed by capillary and tubular proliferation. Our findings illustrate a marked potential of renal tissue to respond to regional ischemia and initiate adaptive reactions, including angiogenesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Positron emission tomography/computed tomography--imaging protocols, artifacts, and pitfalls.

              There has been a longstanding interest in fused images of anatomical information, such as that provided by computed tomography (CT) or magnetic resonance imaging (MRI) systems, with biological information obtainable by positron emission tomography (PET). The near-simultaneous data acquisition in a fixed combination of a PET and a CT scanner in a combined PET/CT imaging system minimizes spatial and temporal mismatches between the modalities by eliminating the need to move the patient in between exams. In addition, using the fast CT scan for PET attenuation correction, the duration of the examination is significantly reduced compared to standalone PET imaging with standard rod-transmission sources. The main source of artifacts arises from the use of the CT-data for scatter and attenuation correction of the PET images. Today, CT reconstruction algorithms cannot account for the presence of metal implants, such as dental fillings or prostheses, properly, thus resulting in streak artifacts, which are propagated into the PET image by the attenuation correction. The transformation of attenuation coefficients at X-ray energies to those at 511 keV works well for soft tissues, bone, and air, but again is insufficient for dense CT contrast agents, such as iodine or barium. Finally, mismatches, for example, due to uncoordinated respiration result in incorrect attenuation-corrected PET images. These artifacts, however, can be minimized or avoided prospectively by careful acquisition protocol considerations. In doubt, the uncorrected images almost always allow discrimination between true and artificial finding. PET/CT has to be integrated into the diagnostic workflow for harvesting the full potential of the new modality. In particular, the diagnostic power of both, the CT and the PET within the combination must not be underestimated. By combining multiple diagnostic studies within a single examination, significant logistic advantages can be expected if the combined PET/CT examination is to replace separate state-of-the-art PET and CT exams, thus resulting in significantly accelerated diagnostics.
                Bookmark

                Author and article information

                Journal
                NEC
                Nephron Clin Pract
                10.1159/issn.1660-2110
                Nephron Clinical Practice
                S. Karger AG
                978-3-8055-8074-8
                978-3-318-01315-3
                1660-2110
                2006
                March 2006
                10 March 2006
                : 103
                : 2
                : c77-c84
                Affiliations
                Department of Nuclear Medicine, University of Heidelberg, Heidelberg, Germany
                Article
                91576 Nephron Clin Pract 2006;103:c77–c84
                10.1159/000091576
                16543760
                © 2006 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 3, Tables: 3, References: 24, Pages: 1
                Product
                Self URI (application/pdf): https://www.karger.com/Article/Pdf/91576
                Categories
                Radiologic Imaging

                Cardiovascular Medicine, Nephrology

                Radiotracer, Renal scintigraphy, Renal failure

                Comments

                Comment on this article