11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Proteinase-activated receptor-2-mediated relaxation in mouse tracheal and bronchial smooth muscle: signal transduction mechanisms and distinct agonist sensitivity.

      The Journal of pharmacology and experimental therapeutics
      Animals, Cyclooxygenase 1, Cyclooxygenase 2, Dinoprostone, physiology, Dose-Response Relationship, Drug, Isoenzymes, metabolism, Lipoprotein Lipase, Male, Membrane Proteins, Mice, Mice, Knockout, Mitogen-Activated Protein Kinase Kinases, Muscle Relaxation, drug effects, Muscle, Smooth, Peptides, pharmacology, Phospholipases A, Prostaglandin-Endoperoxide Synthases, Receptor, PAR-1, Receptor, PAR-2, Signal Transduction, Trachea, Trypsin, p38 Mitogen-Activated Protein Kinases

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We characterized the tracheal and bronchial relaxation caused by proteinase-activated receptor-2 (PAR-2) activation in ddY mice and/or in wild-type and PAR-2-knockout mice of C57BL/6 background. Ser-Leu-Ile-Gly-Arg-Leu-amide (SLIGRL-NH(2)) and Thr-Phe-Leu-Leu-Arg-amide, PAR-2- and PAR-1-activating peptides, respectively, caused relaxation in the isolated ddY mouse trachea and main bronchus. The relaxation was abolished by specific inhibitors of cyclooxygenase (COX)-1, COX-2, mitogen-activated protein kinase kinase (MEK), and p38 MAP kinase. The MEK and p38 MAP kinase inhibitors did not affect prostaglandin E(2)-induced relaxation. Inhibitors of cytosolic Ca(2+)-dependent phospholipase A(2) (PLA), Ca(2+)-independent PLA(2), diacylglycerol lipase, tyrosine kinase, and protein kinase C exhibited no or only minor inhibitory effects on the PAR-mediated relaxation. Trypsin, a PAR-2 activator, and 2-furoyl-Leu-Ile-Gly-Arg-Leu-amide, a potent PAR-2-activating peptide, in addition to SLIGRL-NH(2), caused airway relaxation in wild-type C57BL/6 mice, as in ddY mice. In PAR-2-knockout mice, the peptide effects were absent and the potency of trypsin decreased. Desensitization of PAR-2 and/or PAR-1 greatly suppressed the relaxant effect of trypsin. The bronchial and tracheal tissues displayed distinct sensitivities toward trypsin and the PAR-2-activating peptides. Our data indicate an involvement of both COX-1 and COX-2, and the MEK-extracellular signal-regulated kinase and p38 MAP kinase signaling pathways in the PAR-2- and PAR-1-triggered relaxation of mouse airway tissue, and substantiate a role for PAR-2 in regulating both the trachea and bronchial responsiveness in the mouse lung.

          Related collections

          Author and article information

          Comments

          Comment on this article