36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Molecular virology of hepatitis E virus

      review-article
      1 , 1 , *
      Virus Research
      Elsevier B.V.
      HEV, ORF1, ORF2, ORF3, RNA replication

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This review details the molecular virology of the hepatitis E virus (HEV). While replicons and in vitro infection systems have recently become available, a lot of information on HEV has been generated through comparisons with better-studied positive-strand RNA viruses and through subgenomic expression of viral open reading frames. These models are now being verified with replicon and infection systems. We provide here the current knowledge on the HEV genome and its constituent proteins – ORF1, ORF2 and ORF3. Based on the available information, we also modify the existing model of the HEV life cycle.

          Related collections

          Most cited references94

          • Record: found
          • Abstract: found
          • Article: not found

          RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates.

          Double-stranded RNA (dsRNA) produced during viral replication is believed to be the critical trigger for activation of antiviral immunity mediated by the RNA helicase enzymes retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5). We showed that influenza A virus infection does not generate dsRNA and that RIG-I is activated by viral genomic single-stranded RNA (ssRNA) bearing 5'-phosphates. This is blocked by the influenza protein nonstructured protein 1 (NS1), which is found in a complex with RIG-I in infected cells. These results identify RIG-I as a ssRNA sensor and potential target of viral immune evasion and suggest that its ability to sense 5'-phosphorylated RNA evolved in the innate immune system as a means of discriminating between self and nonself.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Protein modules and signalling networks.

            T. Pawson (1995)
            Communication between cells assumes particular importance in multicellular organisms. The growth, migration and differentiation of cells in the embryo, and their organization into specific tissues, depend on signals transmitted from one cell to another. In the adult, cell signalling orchestrates normal cellular behaviour and responses to wounding and infection. The consequences of breakdowns in this signalling underlie cancer, diabetes and disorders of the immune and cardiovascular systems. Conserved protein domains that act as key regulatory participants in many of these different signalling pathways are highlighted.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences.

              Despite the rapid mutational change that is typical of positive-strand RNA viruses, enzymes mediating the replication and expression of virus genomes contain arrays of conserved sequence motifs. Proteins with such motifs include RNA-dependent RNA polymerase, putative RNA helicase, chymotrypsin-like and papain-like proteases, and methyltransferases. The genes for these proteins form partially conserved modules in large subsets of viruses. A concept of the virus genome as a relatively evolutionarily stable "core" of housekeeping genes accompanied by a much more flexible "shell" consisting mostly of genes coding for virion components and various accessory proteins is discussed. Shuffling of the "shell" genes including genome reorganization and recombination between remote groups of viruses is considered to be one of the major factors of virus evolution. Multiple alignments for the conserved viral proteins were constructed and used to generate the respective phylogenetic trees. Based primarily on the tentative phylogeny for the RNA-dependent RNA polymerase, which is the only universally conserved protein of positive-strand RNA viruses, three large classes of viruses, each consisting of distinct smaller divisions, were delineated. A strong correlation was observed between this grouping and the tentative phylogenies for the other conserved proteins as well as the arrangement of genes encoding these proteins in the virus genome. A comparable correlation with the polymerase phylogeny was not found for genes encoding virion components or for genome expression strategies. It is surmised that several types of arrangement of the "shell" genes as well as basic mechanisms of expression could have evolved independently in different evolutionary lineages. The grouping revealed by phylogenetic analysis may provide the basis for revision of virus classification, and phylogenetic taxonomy of positive-strand RNA viruses is outlined. Some of the phylogenetically derived divisions of positive-strand RNA viruses also include double-stranded RNA viruses, indicating that in certain cases the type of genome nucleic acid may not be a reliable taxonomic criterion for viruses. Hypothetical evolutionary scenarios for positive-strand RNA viruses are proposed. It is hypothesized that all positive-strand RNA viruses and some related double-stranded RNA viruses could have evolved from a common ancestor virus that contained genes for RNA-dependent RNA polymerase, a chymotrypsin-related protease that also functioned as the capsid protein, and possibly an RNA helicase.
                Bookmark

                Author and article information

                Contributors
                Journal
                Virus Res
                Virus Res
                Virus Research
                Elsevier B.V.
                0168-1702
                1872-7492
                21 February 2011
                October 2011
                21 February 2011
                : 161
                : 1
                : 47-58
                Affiliations
                Virology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, India
                Author notes
                [* ]Corresponding author. Tel.: +91 11 26742357; fax: +91 11 26742316. shahid@ 123456icgeb.res.in
                [1]

                Equal contribution.

                Article
                S0168-1702(11)00062-1
                10.1016/j.virusres.2011.02.011
                3130092
                21345356
                e9cb48a9-764b-41bf-a24c-b0f3a0c50cbb
                Copyright © 2011 Elsevier B.V. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                Categories
                Article

                Microbiology & Virology
                hev,orf1,orf2,orf3,rna replication
                Microbiology & Virology
                hev, orf1, orf2, orf3, rna replication

                Comments

                Comment on this article