22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Online Learning and Memory of Neural Trajectory Replays for Prefrontal Persistent and Dynamic Representations in the Irregular Asynchronous State

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the prefrontal cortex (PFC), higher-order cognitive functions and adaptive flexible behaviors rely on continuous dynamical sequences of spiking activity that constitute neural trajectories in the state space of activity. Neural trajectories subserve diverse representations, from explicit mappings in physical spaces to generalized mappings in the task space, and up to complex abstract transformations such as working memory, decision-making and behavioral planning. Computational models have separately assessed learning and replay of neural trajectories, often using unrealistic learning rules or decoupling simulations for learning from replay. Hence, the question remains open of how neural trajectories are learned, memorized and replayed online, with permanently acting biological plasticity rules. The asynchronous irregular regime characterizing cortical dynamics in awake conditions exerts a major source of disorder that may jeopardize plasticity and replay of locally ordered activity. Here, we show that a recurrent model of local PFC circuitry endowed with realistic synaptic spike timing-dependent plasticity and scaling processes can learn, memorize and replay large-size neural trajectories online under asynchronous irregular dynamics, at regular or fast (sped-up) timescale. Presented trajectories are quickly learned (within seconds) as synaptic engrams in the network, and the model is able to chunk overlapping trajectories presented separately. These trajectory engrams last long-term (dozen hours) and trajectory replays can be triggered over an hour. In turn, we show the conditions under which trajectory engrams and replays preserve asynchronous irregular dynamics in the network. Functionally, spiking activity during trajectory replays at regular timescale accounts for both dynamical coding with temporal tuning in individual neurons, persistent activity at the population level, and large levels of variability consistent with observed cognitive-related PFC dynamics. Together, these results offer a consistent theoretical framework accounting for how neural trajectories can be learned, memorized and replayed in PFC networks circuits to subserve flexible dynamic representations and adaptive behaviors.

          Related collections

          Most cited references152

          • Record: found
          • Abstract: not found
          • Article: not found

          Cellular basis of working memory

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            How inhibition shapes cortical activity.

            Cortical processing reflects the interplay of synaptic excitation and synaptic inhibition. Rapidly accumulating evidence is highlighting the crucial role of inhibition in shaping spontaneous and sensory-evoked cortical activity and thus underscores how a better knowledge of inhibitory circuits is necessary for our understanding of cortical function. We discuss current views of how inhibition regulates the function of cortical neurons and point to a number of important open questions. Copyright © 2011 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex.

              1. An oculomotor delayed-response task was used to examine the spatial memory functions of neurons in primate prefrontal cortex. Monkeys were trained to fixate a central spot during a brief presentation (0.5 s) of a peripheral cue and throughout a subsequent delay period (1-6 s), and then, upon the extinction of the fixation target, to make a saccadic eye movement to where the cue had been presented. Cues were usually presented in one of eight different locations separated by 45 degrees. This task thus requires monkeys to direct their gaze to the location of a remembered visual cue, controls the retinal coordinates of the visual cues, controls the monkey's oculomotor behavior during the delay period, and also allows precise measurement of the timing and direction of the relevant behavioral responses. 2. Recordings were obtained from 288 neurons in the prefrontal cortex within and surrounding the principal sulcus (PS) while monkeys performed this task. An additional 31 neurons in the frontal eye fields (FEF) region within and near the anterior bank of the arcuate sulcus were also studied. 3. Of the 288 PS neurons, 170 exhibited task-related activity during at least one phase of this task and, of these, 87 showed significant excitation or inhibition of activity during the delay period relative to activity during the intertrial interval. 4. Delay period activity was classified as directional for 79% of these 87 neurons in that significant responses only occurred following cues located over a certain range of visual field directions and were weak or absent for other cue directions. The remaining 21% were omnidirectional, i.e., showed comparable delay period activity for all visual field locations tested. Directional preferences, or lack thereof, were maintained across different delay intervals (1-6 s). 5. For 50 of the 87 PS neurons, activity during the delay period was significantly elevated above the neuron's spontaneous rate for at least one cue location; for the remaining 37 neurons only inhibitory delay period activity was seen. Nearly all (92%) neurons with excitatory delay period activity were directional and few (8%) were omnidirectional. Most (62%) neurons with purely inhibitory delay period activity were directional, but a substantial minority (38%) was omnidirectional. 6. Fifteen of the neurons with excitatory directional delay period activity also had significant inhibitory delay period activity for other cue directions. These inhibitory responses were usually strongest for, or centered about, cue directions roughly opposite those optimal for excitatory responses.(ABSTRACT TRUNCATED AT 400 WORDS)
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neural Circuits
                Front Neural Circuits
                Front. Neural Circuits
                Frontiers in Neural Circuits
                Frontiers Media S.A.
                1662-5110
                08 July 2021
                2021
                : 15
                : 648538
                Affiliations
                [1] 1Institut des Systèmes Intelligents et de Robotique, CNRS, Inserm, Sorbonne Université , Paris, France
                [2] 2CEA Paris-Saclay, CNRS, NeuroSpin , Saclay, France
                [3] 3Neuroscience Paris Seine - Institut de biologie Paris Seine, CNRS, Inserm, Sorbonne Université , Paris, France
                Author notes

                Edited by: Shintaro Funahashi, Kyoto University, Japan

                Reviewed by: Shantanu P. Jadhav, Brandeis University, United States; Lukas Ian Schmitt, RIKEN Center for Brain Science (CBS), Japan

                *Correspondence: Matthieu X. B. Sarazin matthieu.sarazin@ 123456live.fr

                †These authors have contributed equally to this work

                Article
                10.3389/fncir.2021.648538
                8298038
                e9da7613-8ea0-4eeb-8fc4-a4b2c05b257e
                Copyright © 2021 Sarazin, Victor, Medernach, Naudé and Delord.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 31 December 2020
                : 31 May 2021
                Page count
                Figures: 8, Tables: 0, Equations: 29, References: 152, Pages: 26, Words: 19229
                Categories
                Neuroscience
                Original Research

                Neurosciences
                prefrontal cortex,neural trajectory,attractor,persistent and dynamical coding,working memory,learning,replay,asynchronous irregular state

                Comments

                Comment on this article