59
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transfer of Immunity from Mother to Offspring Is Mediated via Egg-Yolk Protein Vitellogenin

      research-article
      1 , 2 , 3 , 1 , *
      PLoS Pathogens
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Insect immune systems can recognize specific pathogens and prime offspring immunity. High specificity of immune priming can be achieved when insect females transfer immune elicitors into developing oocytes. The molecular mechanism behind this transfer has been a mystery. Here, we establish that the egg-yolk protein vitellogenin is the carrier of immune elicitors. Using the honey bee, Apis mellifera, model system, we demonstrate with microscopy and western blotting that vitellogenin binds to bacteria, both Paenibacillus larvae – the gram-positive bacterium causing American foulbrood disease – and to Escherichia coli that represents gram-negative bacteria. Next, we verify that vitellogenin binds to pathogen-associated molecular patterns; lipopolysaccharide, peptidoglycan and zymosan, using surface plasmon resonance. We document that vitellogenin is required for transport of cell-wall pieces of E. coli into eggs by imaging tissue sections. These experiments identify vitellogenin, which is distributed widely in oviparous species, as the carrier of immune-priming signals. This work reveals a molecular explanation for trans-generational immunity in insects and a previously undescribed role for vitellogenin.

          Author Summary

          Insects lack antibodies, the carriers of immunological memory that vertebrate mothers can transfer to their offspring. Yet, it has been shown that an insect mother facing pathogens can prime her offspring’s immune system. To date, it has remained enigmatic how insects achieve specific trans-generational immune priming despite the absence of antibody-based immunity. Here, we show this is made possible via an egg-yolk protein binding to immune elicitors that are then carried to eggs. This yolk protein, called vitellogenin, is able to bind to different bacteria and pathogenic pattern molecules. We use E. coli fragments as a bait to show how vitellogenin is necessary for the carrying of immune elicitors to eggs. These findings help to understand how insects fight pathogens and can be useful for protection of ecologically and economically important insects, such as the honey bee, that we used as a model species.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Evolutionary ecology of insect immune defenses.

          Evolutionary ecology seeks to understand the selective reasons for the design features of the immune defense, especially with respect to parasitism. The molecular processes thereby set limitations, such as the failure to recognize an antigen, response specificity, the cost of defense, and the risk of autoimmunity. Sex, resource availability, and interference by parasites also affect a response. In turn, the defense repertoire consists of different kinds of immune responses--constitutive or induced, general or specific--and involves memory and lasting protection. Because the situation often defies intuition, mathematical analysis is typically required to identify the costs and benefits of variation in design, but such studies are few. In all, insect immune defense is much more similar to that of vertebrates than previously thought. In addition, the field is now rapidly becoming revolutionized by molecular data and methods that allow unprecedented access to study evolution in action.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Trans-generational immune priming in a social insect.

            Detecting functional homology between invertebrate and vertebrate immunity is of interest in terms of understanding the dynamics and evolution of immune systems. Trans-generational effects on immunity are well known from vertebrates, but their existence in invertebrates remains controversial. Earlier work on invertebrates has interpreted increased offspring resistance to pathogens as trans-generational immune priming. However, interpretation of these earlier studies involves some caveats and thus full evidence for a direct effect of maternal immune experience on offspring immunity is still lacking in invertebrates. Here we show that induced levels of antibacterial activity are higher in the worker offspring of the bumblebee, Bombus terrestris L. when their mother queen received a corresponding immune challenge prior to colony founding. This shows trans-generational immune priming in an insect, with ramifications for the evolution of sociality.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Immune function across generations: integrating mechanism and evolutionary process in maternal antibody transmission.

              The past 30 years of immunological research have revealed much about the proximate mechanisms of maternal antibody transmission and utilization, but have not adequately addressed how these issues are related to evolutionary and ecological theory. Much remains to be learned about individual differences within a species in maternal antibody transmission as well as differences among species in transmission or utilization of antibodies. Similarly, maternal-effects theory has generally neglected the mechanisms by which mothers influence offspring phenotype. Although the environmental cues that generate maternal effects and the consequent effects for offspring phenotype are often well characterized, the intermediary physiological and developmental steps through which the maternal effect is transmitted are generally unknown. Integration of the proximate mechanisms of maternal antibody transmission with evolutionary theory on maternal effects affords an important opportunity to unite mechanism and process by focusing on the links between genetics, environment and physiology, with the ultimate goal of explaining differences among individuals and species in the transfer of immune function from one generation to the next.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, CA USA )
                1553-7366
                1553-7374
                31 July 2015
                July 2015
                : 11
                : 7
                : e1005015
                Affiliations
                [1 ]Centre of Excellence in Biological Interactions, University of Helsinki, Helsinki, Finland & University of Jyväskylä, Jyväskylä, Finland
                [2 ]School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
                [3 ]Department of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences, Aas, Norway
                Stanford University, UNITED STATES
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: HS GVA DF. Performed the experiments: HS DF. Analyzed the data: HS DF. Contributed reagents/materials/analysis tools: HS GVA DF. Wrote the paper: HS GVA DF.

                Article
                PPATHOGENS-D-15-00249
                10.1371/journal.ppat.1005015
                4521805
                26230630
                e9e4e2bd-a945-4d83-b7ff-fede5eaef6af
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 30 January 2015
                : 9 June 2015
                Page count
                Figures: 3, Tables: 0, Pages: 12
                Funding
                HS was funded by Academy of Finland grant number 265971. www.aka.fi/en-GB/A/ GVA was funded by Norwegian Research Council grant number 180504 and 191699. www.forskningsradet.no/en/Home_page/1177315753906 DF was funded by Academy of Finland grant number 251337 and 252411. HS and DF were also supported by University of Helsinki www.helsinki.fi/university. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article