Blog
About

59
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Pilot Study of Circulating miRNAs as Potential Biomarkers of Early Stage Breast Cancer

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          To date, there are no highly sensitive and specific minimally invasive biomarkers for detection of breast cancer at an early stage. The occurrence of circulating microRNAs (miRNAs) in blood components (including serum and plasma) has been repeatedly observed in cancer patients as well as healthy controls. Because of the significance of miRNA in carcinogenesis, circulating miRNAs in blood may be unique biomarkers for early and minimally invasive diagnosis of human cancers. The objective of this pilot study was to discover a panel of circulating miRNAs as potential novel breast cancer biomarkers.

          Methodology/Principal Findings

          Using microarray-based expression profiling followed by Real-Time quantitative Polymerase Cycle Reaction (RT-qPCR) validation, we compared the levels of circulating miRNAs in plasma samples from 20 women with early stage breast cancer (10 Caucasian American (CA) and 10 African American (AA)) and 20 matched healthy controls (10 CAs and 10 AAs). Using the significance level of p<0.05 constrained by at least two-fold expression change as selection criteria, we found that 31 miRNAs were differentially expressed in CA study subjects (17 up and 14 down) and 18 miRNAs were differentially expressed in AA study subjects (9 up and 9 down). Interestingly, only 2 differentially expressed miRNAs overlapped between CA and AA study subjects. Using receiver operational curve (ROC) analysis, we show that not only up-regulated but also down-regulated miRNAs can discriminate patients with breast cancer from healthy controls with reasonable sensitivity and specificity. To further explore the potential roles of these circulating miRNAs in breast carcinogenesis, we applied pathway-based bioinformatics exploratory analysis and predicted a number of significantly enriched pathways which are predicted to be regulated by these circulating miRNAs, most of which are involved in critical cell functions, cancer development and progression.

          Conclusions

          Our observations from this pilot study suggest that the altered levels of circulating miRNAs might have great potential to serve as novel, noninvasive biomarkers for early detection of breast cancer.

          Related collections

          Most cited references 36

          • Record: found
          • Abstract: found
          • Article: not found

          MicroRNA expression profiles classify human cancers.

          Recent work has revealed the existence of a class of small non-coding RNA species, known as microRNAs (miRNAs), which have critical functions across various biological processes. Here we use a new, bead-based flow cytometric miRNA expression profiling method to present a systematic expression analysis of 217 mammalian miRNAs from 334 samples, including multiple human cancers. The miRNA profiles are surprisingly informative, reflecting the developmental lineage and differentiation state of the tumours. We observe a general downregulation of miRNAs in tumours compared with normal tissues. Furthermore, we were able to successfully classify poorly differentiated tumours using miRNA expression profiles, whereas messenger RNA profiles were highly inaccurate when applied to the same samples. These findings highlight the potential of miRNA profiling in cancer diagnosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cluster analysis and display of genome-wide expression patterns.

            A system of cluster analysis for genome-wide expression data from DNA microarray hybridization is described that uses standard statistical algorithms to arrange genes according to similarity in pattern of gene expression. The output is displayed graphically, conveying the clustering and the underlying expression data simultaneously in a form intuitive for biologists. We have found in the budding yeast Saccharomyces cerevisiae that clustering gene expression data groups together efficiently genes of known similar function, and we find a similar tendency in human data. Thus patterns seen in genome-wide expression experiments can be interpreted as indications of the status of cellular processes. Also, coexpression of genes of known function with poorly characterized or novel genes may provide a simple means of gaining leads to the functions of many genes for which information is not available currently.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Circulating microRNAs as stable blood-based markers for cancer detection.

              Improved approaches for the detection of common epithelial malignancies are urgently needed to reduce the worldwide morbidity and mortality caused by cancer. MicroRNAs (miRNAs) are small ( approximately 22 nt) regulatory RNAs that are frequently dysregulated in cancer and have shown promise as tissue-based markers for cancer classification and prognostication. We show here that miRNAs are present in human plasma in a remarkably stable form that is protected from endogenous RNase activity. miRNAs originating from human prostate cancer xenografts enter the circulation, are readily measured in plasma, and can robustly distinguish xenografted mice from controls. This concept extends to cancer in humans, where serum levels of miR-141 (a miRNA expressed in prostate cancer) can distinguish patients with prostate cancer from healthy controls. Our results establish the measurement of tumor-derived miRNAs in serum or plasma as an important approach for the blood-based detection of human cancer.
                Bookmark

                Author and article information

                Affiliations
                [1 ]Department of Cancer Prevention and Controls, Roswell Park Cancer Institute, Buffalo, New York, United States of America
                [2 ]Department of Biostatistics, Roswell Park Cancer Institute, Buffalo, New York, United States of America
                Baylor College of Medicine, United States of America
                Author notes

                Conceived and designed the experiments: HZ CBA SL. Performed the experiments: JS LM. Analyzed the data: DW SL. Contributed reagents/materials/analysis tools: SL. Wrote the paper: HZ JS SL.

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2010
                29 October 2010
                : 5
                : 10
                2966402
                21060830
                10-PONE-RA-21088R1
                10.1371/journal.pone.0013735
                (Editor)
                Zhao et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                Counts
                Pages: 12
                Categories
                Research Article
                Genetics and Genomics/Bioinformatics
                Genetics and Genomics/Cancer Genetics
                Oncology/Breast Cancer

                Uncategorized

                Comments

                Comment on this article