14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Subchondral Bone Plate Changes More Rapidly than Trabecular Bone in Osteoarthritis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Osteoarthritis (OA) is the most common joint disorder, characterised by focal loss of cartilage and increased subchondral bone remodelling at early OA stages of the disease. We have investigated the temporal and the spatial relationship between bone remodelling in subchondral bone plate (Sbp) and trabecular bone (Tb) in Dunkin Hartley (DH, develop OA early) and the Bristol Strain 2 (BS2, control which develop OA late) guinea pigs. Right tibias were dissected from six male animals of each strain, at 10, 16, 24 and 30 weeks of age. Micro-computed tomography was used to quantify the growth plate thickness (GpTh), subchondral bone plate thickness (SbpTh) and trabecular bone thickness (TbTh), and bone mineral density (BMD) in both Sbp and Tb. The rate of change was calculated for 10–16 weeks, 16–24 weeks and 24–30 weeks. The rate of changes in Sbp and Tb thickness at the earliest time interval (10–16 weeks) were significantly greater in DH guinea pigs than in the growth-matched control strain (BS2). The magnitude of these differences was greater in the medial side than the lateral side (DH: 22.7 and 14.75 µm/week, BS2: 5.63 and 6.67 µm/week, respectively). Similarly, changes in the BMD at the earliest time interval was greater in the DH strain than the BS2, again more pronounced in the disease prone medial compartment (DH: 0.0698 and 0.0372 g/cm 3/week, BS2: 0.00457 and 0.00772 g/cm 3/week, respectively). These changes observed preceded microscopic and cellular signs of disease as previously reported. The rapid early changes in SbpTh, TbTh, Sbp BMD and Tb BMD in the disease prone DH guinea pigs compared with the BS2 control strain suggest a link to early OA pathology. This is corroborated by the greater relative changes in subchondral bone in the medial compared with the lateral compartment.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Bone remodelling in osteoarthritis.

          The classical view of the pathogenesis of osteoarthritis (OA) is that subchondral sclerosis is associated with, and perhaps causes, age-related joint degeneration. Recent observations have demonstrated that OA is associated with early loss of bone owing to increased bone remodelling, followed by slow turnover leading to densification of the subchondral plate and complete loss of cartilage. Subchondral densification is a late event in OA that involves only the subchondral plate and calcified cartilage; the subchondral cancellous bone beneath the subchondral plate may remain osteopenic. In experimental models, inducing subchondral sclerosis without allowing the prior stage of increased bone remodelling to occur does not lead to progressive OA. Therefore, both early-stage increased remodelling and bone loss, and the late-stage slow remodelling and subchondral densification are important components of the pathogenetic process that leads to OA. The apparent paradoxical observations that OA is associated with both increased remodelling and osteopenia, as well as decreased remodelling and sclerosis, are consistent with the spatial and temporal separation of these processes during joint degeneration. This Review provides an overview of current knowledge on OA and discusses the role of subchondral bone in the initiation and progression of OA. A hypothetical model of OA pathogenesis is proposed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Role of subchondral bone in the initiation and progression of cartilage damage.

            Osteoarthrosis is a physiologic imbalance, a "joint failure" similar to "heart failure," in which mechanical factors play a role. The initiation and progression of cartilage damage are distinct phenomena. One of the mechanisms of initiation may be a steep stiffness gradient in the underlying subchondral bone. Progression of cartilage lesions probably requires stiffened subchondral bone. In such situations, transverse stresses at the base of the articular cartilage could cause deep horizontal splits in that tissue. The most likely cause of subchondral stiffening in an otherwise congruent joint is repeated failure of the musculoskeletal peak dynamic force attenuation mechanisms. The health and integrity of the overlying articular cartilage depends on the mechanical properties of its bony bed. In certain models of osteoarthrosis, alterations of the bony bed occur before the cartilage changes and suggest that this can occur in clinical conditions. Stiffening of the subchondral bone also can effect joint conformation, which involves deformation of articular cartilage and bone to create maximum contact areas under load.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The role of knee alignment in disease progression and functional decline in knee osteoarthritis.

              Knee osteoarthritis (OA) is a leading cause of disability in older persons. Few risk factors for disease progression or functional decline have been identified. Hip-knee-ankle alignment influences load distribution at the knee; varus and valgus alignment increase medial and lateral load, respectively. To test the hypotheses that (1) varus alignment increases risk of medial knee OA progression during the subsequent 18 months, (2) valgus alignment increases risk of subsequent lateral knee OA progression, (3) greater severity of malalignment is associated with greater subsequent loss of joint space, and (4) greater burden of malalignment is associated with greater subsequent decline in physical function. Prospective longitudinal cohort study conducted March 1997 to March 2000 at an academic medical center in Chicago, Ill. A total of 237 persons recruited from the community with primary knee OA, defined by presence of definite tibiofemoral osteophytes and at least some difficulty with knee-requiring activity; 230 (97%) completed the study. Progression of OA, defined as a 1-grade increase in severity of joint space narrowing on semiflexed, fluoroscopically confirmed knee radiographs; change in narrowest joint space width; and change in physical function between baseline and 18 months, compared by knee alignment at baseline. Varus alignment at baseline was associated with a 4-fold increase in the odds of medial progression, adjusting for age, sex, and body mass index (adjusted odds ratio [OR], 4.09; 95% confidence interval [CI], 2.20-7.62). Valgus alignment at baseline was associated with a nearly 5-fold increase in the odds of lateral progression (adjusted OR, 4.89; 95% CI, 2.13-11.20). Severity of varus correlated with greater medial joint space loss during the subsequent 18 months (R = 0.52; 95% CI, 0.40-0.62 in dominant knees), and severity of valgus correlated with greater subsequent lateral joint space loss (R = 0.35; 95% CI, 0.21-0.47 in dominant knees). Having alignment of more than 5 degrees (in either direction) in both knees at baseline was associated with significantly greater functional deterioration during the 18 months than having alignment of 5 degrees or less in both knees, after adjusting for age, sex, body mass index, and pain. This is, to our knowledge, the first demonstration that in primary knee OA varus alignment increases risk of medial OA progression, that valgus alignment increases risk of lateral OA progression, that burden of malalignment predicts decline in physical function, and that these effects can be detected after as little as 18 months of observation.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Role: Academic Editor
                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                07 September 2016
                September 2016
                : 17
                : 9
                : 1496
                Affiliations
                [1 ]Centre for Comparative and Clinical Anatomy, University of Bristol, Bristol BS2 8EJ, UK; zzaitun@ 123456gmail.com
                [2 ]Imaging Laboratory, Department of Archaeology and Anthropology, University of Bristol, Bristol BS8 1UU, UK; kate.robson-brown@ 123456bristol.ac.uk
                [3 ]School of Clinical Sciences, University of Bristol, Musculoskeletal Research Unit, Learning and Research Building, Southmead Hospital, Bristol BS10 5NB, UK
                Author notes
                [* ]Correspondence: mo.sharif@ 123456bristol.ac.uk ; Tel.: +44-01-1414-7926
                Article
                ijms-17-01496
                10.3390/ijms17091496
                5037773
                27618009
                e9e689a7-da95-4d8a-8535-c636ead6f174
                © 2016 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 14 June 2016
                : 30 August 2016
                Categories
                Article

                Molecular biology
                osteoarthritis,bone remodelling,bone mineral density,animal models,micro-computed tomography scanning

                Comments

                Comment on this article