27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      LTR retrotransposon landscape in Medicago truncatula: more rapid removal than in rice

      research-article
        1 , , 1
      BMC Genomics
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Long terminal repeat retrotransposons (LTR elements) are ubiquitous Eukaryotic TEs that transpose through RNA intermediates. Accounting for significant proportion of many plant genomes, LTR elements have been well established as one of the major forces underlying the evolution of plant genome size, structure and function. The accessibility of more than 40% of genomic sequences of the model legume Medicago truncatula ( Mt) has made the comprehensive study of its LTR elements possible.

          Results

          We use a newly developed tool LTR_FINDER to identify LTR retrotransposons in the Mt genome and detect 526 full-length elements as well as a great number of copies related to them. These elements constitute about 9.6% of currently available genomic sequences. They are classified into 85 families of which 64 are reported for the first time. The majority of the LTR retrotransposons belong to either Copia or Gypsy superfamily and the others are categorized as TRIMs or LARDs by their length. We find that the copy-number of Copia-like families is 3 times more than that of Gypsy-like ones but the latter contribute more to the genome. The analysis of PBS and protein-coding domain structure of the LTR families reveals that they tend to use only 4–5 types of tRNAs and many families have quite conservative ORFs besides known TE domains. For several important families, we describe in detail their abundance, conservation, insertion time and structure. We investigate the amplification-deletion pattern of the elements and find that the detectable full-length elements are relatively young and most of them were inserted within the last 0.52 MY. We also estimate that more than ten million bp of the Mt genomic sequences have been removed by the deletion of LTR elements and the removal of the full-length structures in Mt has been more rapid than in rice.

          Conclusion

          This report is the first comprehensive description and analysis of LTR retrotransposons in the Mt genome. Many important novel LTR families were discovered and their evolution is elucidated. Our results may outline the LTR retrotransposon landscape of the model legume.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Pfam: clans, web tools and services

          Pfam is a database of protein families that currently contains 7973 entries (release 18.0). A recent development in Pfam has enabled the grouping of related families into clans. Pfam clans are described in detail, together with the new associated web pages. Improvements to the range of Pfam web tools and the first set of Pfam web services that allow programmatic access to the database and associated tools are also presented. Pfam is available on the web in the UK (), the USA (), France () and Sweden ().
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rapid recent growth and divergence of rice nuclear genomes.

            By employing the nuclear DNA of the African rice Oryza glaberrima as a reference genome, the timing, natures, mechanisms, and specificities of recent sequence evolution in the indica and japonica subspecies of Oryza sativa were identified. The data indicate that the genome sizes of both indica and japonica have increased substantially, >2% and >6%, respectively, since their divergence from a common ancestor, mainly because of the amplification of LTR-retrotransposons. However, losses of all classes of DNA sequence through unequal homologous recombination and illegitimate recombination have attenuated the growth of the rice genome. Small deletions have been particularly frequent throughout the genome. In >1 Mb of orthologous regions that we analyzed, no cases of complete gene acquisition or loss from either indica or japonica were found, nor was any example of precise transposon excision detected. The sequences between genes were observed to have a very high rate of divergence, indicating a molecular clock for transposable elements that is at least 2-fold more rapid than synonymous base substitutions within genes. We found that regions prone to frequent insertions and deletions also exhibit higher levels of point mutation. These results indicate a highly dynamic rice genome with competing processes for the generation and removal of genetic variation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice.

              Retrotransposons are the main components of eukaryotic genomes, representing up to 80% of some large plant genomes. These mobile elements transpose via a "copy and paste" mechanism, thus increasing their copy number while active. Their accumulation is now accepted as the main factor of genome size increase in higher eukaryotes, besides polyploidy. However, the dynamics of this process are poorly understood. In this study, we show that Oryza australiensis, a wild relative of the Asian cultivated rice O. sativa, has undergone recent bursts of three LTR-retrotransposon families. This genome has accumulated more than 90,000 retrotransposon copies during the last three million years, leading to a rapid twofold increase of its size. In addition, phenetic analyses of these retrotransposons clearly confirm that the genomic bursts occurred posterior to the radiation of the species. This provides direct evidence of retrotransposon-mediated variation of genome size within a plant genus.
                Bookmark

                Author and article information

                Journal
                BMC Genomics
                BMC Genomics
                BioMed Central
                1471-2164
                2008
                10 August 2008
                : 9
                : 382
                Affiliations
                [1 ]T-life Research Center, Department of Physics, Fudan University, Shanghai 200433, PR China
                Article
                1471-2164-9-382
                10.1186/1471-2164-9-382
                2533021
                18691433
                e9e71218-c186-4854-9854-eddd9ca3dd60
                Copyright © 2008 Wang and Liu; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 16 April 2008
                : 10 August 2008
                Categories
                Research Article

                Genetics
                Genetics

                Comments

                Comment on this article