10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Sphaerotilus natans, a Neutrophilic Iron-Related Sheath-Forming Bacterium: Perspectives for Metal Remediation Strategies

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references97

          • Record: found
          • Abstract: found
          • Article: not found

          Bacterial biosorbents and biosorption.

          Biosorption is a technique that can be used for the removal of pollutants from waters, especially those that are not easily biodegradable such as metals and dyes. A variety of biomaterials are known to bind these pollutants, including bacteria, fungi, algae, and industrial and agricultural wastes. In this review, the biosorption abilities of bacterial biomass towards dyes and metal ions are emphasized. The properties of the cell wall constituents, such as peptidoglycan, and the role of functional groups, such as carboxyl, amine and phosphonate, are discussed on the basis of their biosorption potentials. The binding mechanisms, as well as the parameters influencing the passive uptake of pollutants, are analyzed. A detailed description of isotherm and kinetic models and the importance of mechanistic modeling are presented. A systematic comparison of literature, based on the metal/dye binding capacity of bacterial biomass under different conditions, is also provided. To enhance biosorption capacity, biomass modifications through chemical methods and genetic engineering are discussed. The problems associated with microbial biosorption are analyzed, and suitable remedies discussed. For the continuous treatment of effluents, an up-flow packed column configuration is suggested and the factors influencing its performance are discussed. The present review also highlights the necessity for the examination of biosorbents within real situations, as competition between solutes and water quality may affect the biosorption performance. Thus, this article reviews the achievements and current status of biosorption technology, and hopes to provide insights into this research frontier.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Iron-oxidizing bacteria: an environmental and genomic perspective.

            In the 1830s, iron bacteria were among the first groups of microbes to be recognized for carrying out a fundamental geological process, namely the oxidation of iron. Due to lingering questions about their metabolism, coupled with difficulties in culturing important community members, studies of Fe-oxidizing bacteria (FeOB) have lagged behind those of other important microbial lithotrophic metabolisms. Recently, research on lithotrophic, oxygen-dependent FeOB that grow at circumneutral pH has accelerated. This work is driven by several factors including the recognition by both microbiologists and geoscientists of the role FeOB play in the biogeochemistry of iron and other elements. The isolation of new strains of obligate FeOB allowed a better understanding of their physiology and phylogeny and the realization that FeOB are abundant at certain deep-sea hydrothermal vents. These ancient microorganisms offer new opportunities to learn about fundamental biological processes that can be of practical importance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Remediation technologies for heavy metal contaminated groundwater.

              The contamination of groundwater by heavy metal, originating either from natural soil sources or from anthropogenic sources is a matter of utmost concern to the public health. Remediation of contaminated groundwater is of highest priority since billions of people all over the world use it for drinking purpose. In this paper, thirty five approaches for groundwater treatment have been reviewed and classified under three large categories viz chemical, biochemical/biological/biosorption and physico-chemical treatment processes. Comparison tables have been provided at the end of each process for a better understanding of each category. Selection of a suitable technology for contamination remediation at a particular site is one of the most challenging job due to extremely complex soil chemistry and aquifer characteristics and no thumb-rule can be suggested regarding this issue. In the past decade, iron based technologies, microbial remediation, biological sulphate reduction and various adsorbents played versatile and efficient remediation roles. Keeping the sustainability issues and environmental ethics in mind, the technologies encompassing natural chemistry, bioremediation and biosorption are recommended to be adopted in appropriate cases. In many places, two or more techniques can work synergistically for better results. Processes such as chelate extraction and chemical soil washings are advisable only for recovery of valuable metals in highly contaminated industrial sites depending on economical feasibility.
                Bookmark

                Author and article information

                Journal
                Geomicrobiology Journal
                Geomicrobiology Journal
                Informa UK Limited
                0149-0451
                1521-0529
                October 25 2013
                January 02 2014
                October 25 2013
                January 02 2014
                : 31
                : 1
                : 64-75
                Article
                10.1080/01490451.2013.806611
                ea04a7f3-ecba-48a0-9b2f-6f53a3c36e33
                © 2014
                History

                Comments

                Comment on this article