42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      miR-149-5p promotes chemotherapeutic resistance in ovarian cancer via the inactivation of the Hippo signaling pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chemotherapeutic resistance remains a critical clinical issue is responsible for treatment failure in patients with ovarian cancer. Evidence of the involvement of miRNAs in chemoresistance in ovarian cancer has been recently emerging. However, the underlying molecular links between chemoresistance and miRNAs remain largely unknown. In this study, we report that miR-149-5p expression is markedly elevated in chemoresistant ovarian cancer tissues compared with the chemosensitive ovarian cancer tissues. Furthermore, the silencing of miR-149-5p enhanced the chemosensitivity of ovarian cancer cells to cisplatin in vitro and in vivo. Conversely, the upregulation of miR-149-5p aggravated chemoresistance in ovarian cancer cells. Our results further revealed that miR-149-5p directly targeted the core kinase components of the Hippo signaling pathway, STE20-like kinase (MST)1 and protein salvador homolog 1 (SAV1), resulting in the inactivation of TEA domain (TEAD) transcription. On the whole, our findings reveal a novel mechanism of of action miR-149-5p in inducing chemotherapeutic resistance in ovarian cancer, indicating that miR-149-5p may serve as a chemotherapeutic response indicator and a potential therapeutic target in ovarian cancer.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Hippo signaling: growth control and beyond.

          The Hippo pathway has emerged as a conserved signaling pathway that is essential for the proper regulation of organ growth in Drosophila and vertebrates. Although the mechanisms of signal transduction of the core kinases Hippo/Mst and Warts/Lats are relatively well understood, less is known about the upstream inputs of the pathway and about the downstream cellular and developmental outputs. Here, we review recently discovered mechanisms that contribute to the dynamic regulation of Hippo signaling during Drosophila and vertebrate development. We also discuss the expanding diversity of Hippo signaling functions during development, discoveries that shed light on a complex regulatory system and provide exciting new insights into the elusive mechanisms that regulate organ growth and regeneration.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ovarian cancer.

            Ovarian carcinomas are a heterogeneous group of neoplasms and are traditionally subclassified based on type and degree of differentiation. Although current clinical management of ovarian carcinoma largely fails to take this heterogeneity into account, it is becoming evident that each major histological type has characteristic genetic defects that deregulate specific signaling pathways in the tumor cells. Moreover, within the most common histological types, the molecular pathogenesis of low-grade versus high-grade tumors appears to be largely distinct. Mouse models of ovarian carcinoma have been developed that recapitulate many of the morphological features, biological behavior, and gene-expression patterns of selected subtypes of ovarian cancer. Such models will likely prove useful for studying ovarian cancer biology and for preclinical testing of molecularly targeted therapeutics, which may ultimately lead to better clinical outcomes for women with ovarian cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A molecular mechanism that links Hippo signalling to the inhibition of Wnt/β-catenin signalling.

              The Hippo signalling pathway has emerged as a key regulator of organ size, tissue homeostasis, and patterning. Recent studies have shown that two effectors in this pathway, YAP/TAZ, modulate Wnt/β-catenin signalling through their interaction with β-catenin or Dishevelled, depending on biological contexts. Here, we identify a novel mechanism through which Hippo signalling inhibits Wnt/β-catenin signalling. We show that YAP and TAZ, the transcriptional co-activators in the Hippo pathway, suppress Wnt signalling without suppressing the stability of β-catenin but through preventing its nuclear translocation. Our results show that YAP/TAZ binds to β-catenin, thereby suppressing Wnt-target gene expression, and that the Hippo pathway-stimulated phosphorylation of YAP, which induces cytoplasmic translocation of YAP, is required for the YAP-mediated inhibition of Wnt/β-catenin signalling. We also find that downregulation of Hippo signalling correlates with upregulation of β-catenin signalling in colorectal cancers. Remarkably, our analysis demonstrates that phosphorylated YAP suppresses nuclear translocation of β-catenin by directly binding to it in the cytoplasm. These results provide a novel mechanism, in which Hippo signalling antagonizes Wnt signalling by regulating nuclear translocation of β-catenin.
                Bookmark

                Author and article information

                Journal
                Int J Oncol
                Int. J. Oncol
                IJO
                International Journal of Oncology
                D.A. Spandidos
                1019-6439
                1791-2423
                March 2018
                24 January 2018
                24 January 2018
                : 52
                : 3
                : 815-827
                Affiliations
                [1 ]Departments of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510700
                [2 ]Department of Cancer Prevention
                [3 ]Department of Gynecology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
                Author notes
                Correspondence to: Dr Shuzhong Yao, Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Second Road, Guangzhou, Guangdong 510700. P.R. China, E-mail: yszlfy@ 123456163.com
                Professor Jundong Li, Department of Gynecology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, Guangdong 510060, P.R. China, E-mail: lijd@ 123456sysucc.org.cn
                [*]

                Contributed equally

                Article
                ijo-52-03-0815
                10.3892/ijo.2018.4252
                5807033
                29393390
                ea078d79-f5e8-4bba-be85-6cf32b01a3c0
                Copyright: © Xu et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 31 July 2017
                : 20 December 2017
                Categories
                Articles

                microrna-149-5p,chemotherapeutic resistance,hippo signaling pathway and ovarian cancer

                Comments

                Comment on this article