16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Does the eclipse limit bacterial nucleoid complexity and cell width?

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cell size of bacteria M is related to 3 temporal parameters: chromosome replication time C, period from replication-termination to subsequent division D, and doubling time τ. Steady-state, bacillary cells grow exponentially by extending length L only, but their constant width W is larger at shorter τ‘s or longer C's, in proportion to the number of chromosome replication positions n (= C/ τ), at least in Escherichia coli and Salmonella typhimurium. Extending C by thymine limitation of fast-growing thyA mutants result in continuous increase of M, associated with rising W, up to a limit before branching. A set of such puzzling observations is qualitatively consistent with the view that the actual cell mass (or volume) at the time of replication-initiation Mi (or Vi), usually relatively constant in growth at varying τ′s, rises with time under thymine limitation of fast-growing, thymine-requiring E. coli strains. The hypothesis will be tested that presumes existence of a minimal distance l min between successive moving replisomes, translated into the time needed for a replisome to reach l min before a new replication-initiation at oriC is allowed, termed Eclipse E. Preliminary analysis of currently available data is inconsistent with a constant E under all conditions, hence other explanations and ways to test them are proposed in an attempt to elucidate these and other results. The complex hypothesis takes into account much of what is currently known about Bacterial Physiology: the relationships between cell dimensions, growth and cycle parameters, particularly nucleoid structure, replication and position, and the mode of peptidoglycan biosynthesis. Further experiments are mentioned that are necessary to test the discussed ideas and hypotheses.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          Peptidoglycan structure and architecture.

          The peptidoglycan (murein) sacculus is a unique and essential structural element in the cell wall of most bacteria. Made of glycan strands cross-linked by short peptides, the sacculus forms a closed, bag-shaped structure surrounding the cytoplasmic membrane. There is a high diversity in the composition and sequence of the peptides in the peptidoglycan from different species. Furthermore, in several species examined, the fine structure of the peptidoglycan significantly varies with the growth conditions. Limited number of biophysical data on the thickness, elasticity and porosity of peptidoglycan are available. The different models for the architecture of peptidoglycan are discussed with respect to structural and physical parameters.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bacterial growth: global effects on gene expression, growth feedback and proteome partition.

            The function of endogenous as well as synthetic genetic circuits is generically coupled to the physiological state of the cell. For exponentially growing bacteria, a key characteristic of the state of the cell is the growth rate and thus gene expression is often growth-rate dependent. Here we review recent results on growth-rate dependent gene expression. We distinguish different types of growth-rate dependencies by the mechanisms of regulation involved and the presence or absence of an effect of the gene product on growth. The latter can lead to growth feedback, feedback mediated by changes of the global state of the cell. Moreover, we discuss how growth rate dependence can be used as a guide to study the molecular implementation of physiological regulation. Copyright © 2014 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Maturation of the Escherichia coli divisome occurs in two steps.

              Cell division proteins FtsZ (FtsA, ZipA, ZapA), FtsE/X, FtsK, FtsQ, FtsL/B, FtsW, PBP3, FtsN and AmiC localize at mid cell in Escherichia coli in an interdependent order as listed. To investigate whether this reflects a time dependent maturation of the divisome, the average cell age at which FtsZ, FtsQ, FtsW, PBP3 and FtsN arrive at their destination was determined by immuno- and GFP-fluorescence microscopy of steady state grown cells at a variety of growth rates. Consistently, a time delay of 14-21 min, depending on the growth rate, between Z-ring formation and the mid cell recruitment of proteins down stream of FtsK was found. We suggest a two-step model for bacterial division in which the Z-ring is involved in the switch from cylindrical to polar peptidoglycan synthesis, whereas the much later localizing cell division proteins are responsible for the modification of the envelope shape into that of two new poles.
                Bookmark

                Author and article information

                Contributors
                Journal
                Synth Syst Biotechnol
                Synth Syst Biotechnol
                Synthetic and Systems Biotechnology
                KeAi Publishing
                2405-805X
                2405-805X
                29 November 2017
                December 2017
                29 November 2017
                : 2
                : 4
                : 267-275
                Affiliations
                [a ]Faculty of Natural Sciences, Ben-Gurion University of the Negev, POB 653, Be'er-Sheva, 84105, Israel
                [b ]Center for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, PR China
                [c ]Bacterial Cell Biology, SILS, Boelelaan 1108, Amsterdam, The Netherlands
                Author notes
                []Corresponding author. ariehzar@ 123456gmail.com
                Article
                S2405-805X(17)30092-3
                10.1016/j.synbio.2017.11.004
                5851910
                ea0f51d4-1aaa-4512-8a57-1807f19c727b
                © 2017 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 14 September 2017
                : 7 November 2017
                : 7 November 2017
                Categories
                Article

                bacterial cell cycle,size and dimensions,growth,replication and division,nucleoid complexity,eclipse

                Comments

                Comment on this article