32
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      IoT in the Wake of COVID-19: A Survey on Contributions, Challenges and Evolution

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The novel coronavirus (COVID-19), declared by the World Health Organization (WHO) as a global pandemic, has brought with it changes to the general way of life. Major sectors of the world industry and economy have been affected and the Internet of Things (IoT) management and framework is no exception in this regard. This article provides an up to date survey on how a global pandemic such as COVID-19 has affected the world of IoT technologies. It looks at the contributions that IoT and associated sensor technologies have made towards virus tracing, tracking and spread mitigation. The associated challenges of deployment of sensor hardware in the face of a rapidly spreading pandemic have been looked into as part of this review article. The effects of a global pandemic on the evolution of IoT architectures and management have also been addressed, leading to the likely outcomes on future IoT implementations. In general, this article provides an insight into the advancement of sensor-based E-health towards the management of global pandemics. It also answers the question of how a global virus pandemic has shaped the future of IoT networks.

          Related collections

          Most cited references78

          • Record: found
          • Abstract: found
          • Article: not found

          An interactive web-based dashboard to track COVID-19 in real time

          In December, 2019, a local outbreak of pneumonia of initially unknown cause was detected in Wuhan (Hubei, China), and was quickly determined to be caused by a novel coronavirus, 1 namely severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The outbreak has since spread to every province of mainland China as well as 27 other countries and regions, with more than 70 000 confirmed cases as of Feb 17, 2020. 2 In response to this ongoing public health emergency, we developed an online interactive dashboard, hosted by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University, Baltimore, MD, USA, to visualise and track reported cases of coronavirus disease 2019 (COVID-19) in real time. The dashboard, first shared publicly on Jan 22, illustrates the location and number of confirmed COVID-19 cases, deaths, and recoveries for all affected countries. It was developed to provide researchers, public health authorities, and the general public with a user-friendly tool to track the outbreak as it unfolds. All data collected and displayed are made freely available, initially through Google Sheets and now through a GitHub repository, along with the feature layers of the dashboard, which are now included in the Esri Living Atlas. The dashboard reports cases at the province level in China; at the city level in the USA, Australia, and Canada; and at the country level otherwise. During Jan 22–31, all data collection and processing were done manually, and updates were typically done twice a day, morning and night (US Eastern Time). As the outbreak evolved, the manual reporting process became unsustainable; therefore, on Feb 1, we adopted a semi-automated living data stream strategy. Our primary data source is DXY, an online platform run by members of the Chinese medical community, which aggregates local media and government reports to provide cumulative totals of COVID-19 cases in near real time at the province level in China and at the country level otherwise. Every 15 min, the cumulative case counts are updated from DXY for all provinces in China and for other affected countries and regions. For countries and regions outside mainland China (including Hong Kong, Macau, and Taiwan), we found DXY cumulative case counts to frequently lag behind other sources; we therefore manually update these case numbers throughout the day when new cases are identified. To identify new cases, we monitor various Twitter feeds, online news services, and direct communication sent through the dashboard. Before manually updating the dashboard, we confirm the case numbers with regional and local health departments, including the respective centres for disease control and prevention (CDC) of China, Taiwan, and Europe, the Hong Kong Department of Health, the Macau Government, and WHO, as well as city-level and state-level health authorities. For city-level case reports in the USA, Australia, and Canada, which we began reporting on Feb 1, we rely on the US CDC, the government of Canada, the Australian Government Department of Health, and various state or territory health authorities. All manual updates (for countries and regions outside mainland China) are coordinated by a team at Johns Hopkins University. The case data reported on the dashboard aligns with the daily Chinese CDC 3 and WHO situation reports 2 for within and outside of mainland China, respectively (figure ). Furthermore, the dashboard is particularly effective at capturing the timing of the first reported case of COVID-19 in new countries or regions (appendix). With the exception of Australia, Hong Kong, and Italy, the CSSE at Johns Hopkins University has reported newly infected countries ahead of WHO, with Hong Kong and Italy reported within hours of the corresponding WHO situation report. Figure Comparison of COVID-19 case reporting from different sources Daily cumulative case numbers (starting Jan 22, 2020) reported by the Johns Hopkins University Center for Systems Science and Engineering (CSSE), WHO situation reports, and the Chinese Center for Disease Control and Prevention (Chinese CDC) for within (A) and outside (B) mainland China. Given the popularity and impact of the dashboard to date, we plan to continue hosting and managing the tool throughout the entirety of the COVID-19 outbreak and to build out its capabilities to establish a standing tool to monitor and report on future outbreaks. We believe our efforts are crucial to help inform modelling efforts and control measures during the earliest stages of the outbreak.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The SARS, MERS and novel coronavirus (COVID-19) epidemics, the newest and biggest global health threats: what lessons have we learned?

            Abstract Objectives To provide an overview of the three major deadly coronaviruses and identify areas for improvement of future preparedness plans, as well as provide a critical assessment of the risk factors and actionable items for stopping their spread, utilizing lessons learned from the first two deadly coronavirus outbreaks, as well as initial reports from the current novel coronavirus (COVID-19) epidemic in Wuhan, China. Methods Utilizing the Centers for Disease Control and Prevention (CDC, USA) website, and a comprehensive review of PubMed literature, we obtained information regarding clinical signs and symptoms, treatment and diagnosis, transmission methods, protection methods and risk factors for Middle East Respiratory Syndrome (MERS), Severe Acute Respiratory Syndrome (SARS) and COVID-19. Comparisons between the viruses were made. Results Inadequate risk assessment regarding the urgency of the situation, and limited reporting on the virus within China has, in part, led to the rapid spread of COVID-19 throughout mainland China and into proximal and distant countries. Compared with SARS and MERS, COVID-19 has spread more rapidly, due in part to increased globalization and the focus of the epidemic. Wuhan, China is a large hub connecting the North, South, East and West of China via railways and a major international airport. The availability of connecting flights, the timing of the outbreak during the Chinese (Lunar) New Year, and the massive rail transit hub located in Wuhan has enabled the virus to perforate throughout China, and eventually, globally. Conclusions We conclude that we did not learn from the two prior epidemics of coronavirus and were ill-prepared to deal with the challenges the COVID-19 epidemic has posed. Future research should attempt to address the uses and implications of internet of things (IoT) technologies for mapping the spread of infection.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Artificial Intelligence (AI) applications for COVID-19 pandemic

              Background and aims Healthcare delivery requires the support of new technologies like Artificial Intelligence (AI), Internet of Things (IoT), Big Data and Machine Learning to fight and look ahead against the new diseases. We aim to review the role of AI as a decisive technology to analyze, prepare us for prevention and fight with COVID-19 (Coronavirus) and other pandemics. Methods The rapid review of the literature is done on the database of Pubmed, Scopus and Google Scholar using the keyword of COVID-19 or Coronavirus and Artificial Intelligence or AI. Collected the latest information regarding AI for COVID-19, then analyzed the same to identify its possible application for this disease. Results We have identified seven significant applications of AI for COVID-19 pandemic. This technology plays an important role to detect the cluster of cases and to predict where this virus will affect in future by collecting and analyzing all previous data. Conclusions Healthcare organizations are in an urgent need for decision-making technologies to handle this virus and help them in getting proper suggestions in real-time to avoid its spread. AI works in a proficient way to mimic like human intelligence. It may also play a vital role in understanding and suggesting the development of a vaccine for COVID-19. This result-driven technology is used for proper screening, analyzing, prediction and tracking of current patients and likely future patients. The significant applications are applied to tracks data of confirmed, recovered and death cases.
                Bookmark

                Author and article information

                Contributors
                Journal
                IEEE Access
                IEEE Access
                0063500
                ACCESS
                IAECCG
                Ieee Access
                IEEE
                2169-3536
                2020
                12 October 2020
                : 8
                : 186821-186839
                Affiliations
                [1 ] departmentDepartment of Electrical Engineering, institutionCopperbelt University, institutionringgold 108291; Kitwe 10101 Zambia
                [2 ] institutionFrench South African Institute of Technology (FSATI), Tshwane University of Technology, institutionringgold 56412; Pretoria 0001 South Africa
                [3 ] divisionCollege of Automation and Artificial Intelligence, institutionNanjing University of Posts and Telecommunications, institutionringgold 12577; Nanjing 210023 China
                [4 ] institutionCouncil for Scientific and Industrial Research; Pretoria 0083 South Africa
                [5 ] departmentDepartment of Electrical, divisionElectronic and Computer Engineering, institutionUniversity of Pretoria, institutionringgold 56410; Pretoria 0028 South Africa
                [6 ] divisionLISSI Laboratory, institutionUniversity Paris-Est Creteil (UPEC); 94000 Creteil France
                Article
                10.1109/ACCESS.2020.3030090
                8545289
                ea23b99d-f61a-4430-bac0-7c95d881c7c7
                This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

                This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

                Page count
                Figures: 4, Tables: 4, Equations: 25, References: 87, Pages: 19
                Product
                Categories
                Communications Technology
                Computational and Artificial Intelligence
                Systems, Man, and Cybernetics
                Sensors

                Comments

                Comment on this article