5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Phenoconversion of Cytochrome P450 Metabolism: A Systematic Review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Phenoconversion is the mismatch between the individual’s genotype-based prediction of drug metabolism and the true capacity to metabolize drugs due to nongenetic factors. While the concept of phenoconversion has been described in narrative reviews, no systematic review is available. A systematic review was conducted to investigate factors contributing to phenoconversion and the impact on cytochrome P450 metabolism. Twenty-seven studies met the inclusion criteria and were incorporated in this review, of which 14 demonstrate phenoconversion for a specific genotype group. Phenoconversion into a lower metabolizer phenotype was reported for concomitant use of CYP450-inhibiting drugs, increasing age, cancer, and inflammation. Phenoconversion into a higher metabolizer phenotype was reported for concomitant use of CYP450 inducers and smoking. Moreover, alcohol, pregnancy, and vitamin D exposure are factors where study data suggested phenoconversion. The studies reported genotype–phenotype discrepancies, but the impact of phenoconversion on the effectiveness and toxicity in the clinical setting remains unclear. In conclusion, phenoconversion is caused by both extrinsic factors and patient- and disease-related factors. The mechanism(s) behind and the extent to which CYP450 metabolism is affected remain unexplored. If studied more comprehensively, accounting for phenoconversion may help to improve our ability to predict the individual CYP450 metabolism and personalize drug treatment.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement

          Systematic reviews should build on a protocol that describes the rationale, hypothesis, and planned methods of the review; few reviews report whether a protocol exists. Detailed, well-described protocols can facilitate the understanding and appraisal of the review methods, as well as the detection of modifications to methods and selective reporting in completed reviews. We describe the development of a reporting guideline, the Preferred Reporting Items for Systematic reviews and Meta-Analyses for Protocols 2015 (PRISMA-P 2015). PRISMA-P consists of a 17-item checklist intended to facilitate the preparation and reporting of a robust protocol for the systematic review. Funders and those commissioning reviews might consider mandating the use of the checklist to facilitate the submission of relevant protocol information in funding applications. Similarly, peer reviewers and editors can use the guidance to gauge the completeness and transparency of a systematic review protocol submitted for publication in a journal or other medium.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation.

            Cytochromes P450 (CYP) are a major source of variability in drug pharmacokinetics and response. Of 57 putatively functional human CYPs only about a dozen enzymes, belonging to the CYP1, 2, and 3 families, are responsible for the biotransformation of most foreign substances including 70-80% of all drugs in clinical use. The highest expressed forms in liver are CYPs 3A4, 2C9, 2C8, 2E1, and 1A2, while 2A6, 2D6, 2B6, 2C19 and 3A5 are less abundant and CYPs 2J2, 1A1, and 1B1 are mainly expressed extrahepatically. Expression of each CYP is influenced by a unique combination of mechanisms and factors including genetic polymorphisms, induction by xenobiotics, regulation by cytokines, hormones and during disease states, as well as sex, age, and others. Multiallelic genetic polymorphisms, which strongly depend on ethnicity, play a major role for the function of CYPs 2D6, 2C19, 2C9, 2B6, 3A5 and 2A6, and lead to distinct pharmacogenetic phenotypes termed as poor, intermediate, extensive, and ultrarapid metabolizers. For these CYPs, the evidence for clinical significance regarding adverse drug reactions (ADRs), drug efficacy and dose requirement is rapidly growing. Polymorphisms in CYPs 1A1, 1A2, 2C8, 2E1, 2J2, and 3A4 are generally less predictive, but new data on CYP3A4 show that predictive variants exist and that additional variants in regulatory genes or in NADPH:cytochrome P450 oxidoreductase (POR) can have an influence. Here we review the recent progress on drug metabolism activity profiles, interindividual variability and regulation of expression, and the functional and clinical impact of genetic variation in drug metabolizing P450s. Copyright © 2013 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              CPIC: Clinical Pharmacogenetics Implementation Consortium of the Pharmacogenomics Research Network.

                Bookmark

                Author and article information

                Journal
                J Clin Med
                J Clin Med
                jcm
                Journal of Clinical Medicine
                MDPI
                2077-0383
                07 September 2020
                September 2020
                : 9
                : 9
                : 2890
                Affiliations
                [1 ]Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; s.d.klomp@ 123456lumc.nl (S.D.K.); h.j.guchelaar@ 123456lumc.nl (H.-J.G.)
                [2 ]Leiden Network for Personalised Therapeutics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; m.l.manson@ 123456lacdr.leidenuniv.nl
                [3 ]Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, 2333 CC Leiden, The Netherlands
                Author notes
                [* ]Correspondence: j.j.swen@ 123456lumc.nl
                Author information
                https://orcid.org/0000-0001-8124-5293
                https://orcid.org/0000-0002-5508-8615
                https://orcid.org/0000-0002-7085-1383
                https://orcid.org/0000-0002-3965-5552
                Article
                jcm-09-02890
                10.3390/jcm9092890
                7565093
                32906709
                ea290f2a-ddcb-441e-b9e0-890010fa3fdb
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 03 August 2020
                : 04 September 2020
                Categories
                Review

                phenoconversion,pharmacogenetics,cytochrome p450,concomitant medication,comorbidities,cyp2d6,cyp2c19,cyp3a5,personalized medicine

                Comments

                Comment on this article