3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Biomechanics of juvenile tyrannosaurid mandibles and their implications for bite force: Evolutionary biology

      1 , 2
      The Anatomical Record
      Wiley

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references95

          • Record: found
          • Abstract: found
          • Article: not found

          Poisson's ratio and modern materials.

          In comparing a material's resistance to distort under mechanical load rather than to alter in volume, Poisson's ratio offers the fundamental metric by which to compare the performance of any material when strained elastically. The numerical limits are set by ½ and -1, between which all stable isotropic materials are found. With new experiments, computational methods and routes to materials synthesis, we assess what Poisson's ratio means in the contemporary understanding of the mechanical characteristics of modern materials. Central to these recent advances, we emphasize the significance of relationships outside the elastic limit between Poisson's ratio and densification, connectivity, ductility and the toughness of solids; and their association with the dynamic properties of the liquids from which they were condensed and into which they melt.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gigantism and comparative life-history parameters of tyrannosaurid dinosaurs.

            How evolutionary changes in body size are brought about by variance in developmental timing and/or growth rates (also known as heterochrony) is a topic of considerable interest in evolutionary biology. In particular, extreme size change leading to gigantism occurred within the dinosaurs on multiple occasions. Whether this change was brought about by accelerated growth, delayed maturity or a combination of both processes is unknown. A better understanding of relationships between non-avian dinosaur groups and the newfound capacity to reconstruct their growth curves make it possible to address these questions quantitatively. Here we study growth patterns within the Tyrannosauridae, the best known group of large carnivorous dinosaurs, and determine the developmental means by which Tyrannosaurus rex, weighing 5,000 kg and more, grew to be one of the most enormous terrestrial carnivorous animals ever. T. rex had a maximal growth rate of 2.1 kg d(-1), reached skeletal maturity in two decades and lived for up to 28 years. T. rex's great stature was primarily attained by accelerating growth rates beyond that of its closest relatives.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A long-snouted predatory dinosaur from africa and the evolution of spinosaurids

              Fossils discovered in Lower Cretaceous (Aptian) rocks in the Tenere Desert of central Niger provide new information about spinosaurids, a peculiar group of piscivorous theropod dinosaurs. The remains, which represent a new genus and species, reveal the extreme elongation and transverse compression of the spinosaurid snout. The postcranial bones include blade-shaped vertebral spines that form a low sail over the hips. Phylogenetic analysis suggests that the enlarged thumb claw and robust forelimb evolved during the Jurassic, before the elongated snout and other fish-eating adaptations in the skull. The close phylogenetic relationship between the new African spinosaurid and Baryonyx from Europe provides evidence of dispersal across the Tethys seaway during the Early Cretaceous.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                The Anatomical Record
                Anat Rec
                Wiley
                1932-8486
                1932-8494
                March 09 2021
                Affiliations
                [1 ]School of Earth Sciences University of Bristol Bristol United Kingdom
                [2 ]College of Osteopathic Medicine Oklahoma State University Tulsa Oklahoma USA
                Article
                10.1002/ar.24602
                ea382694-d88a-4c44-82c1-078b874bd668
                © 2021

                http://creativecommons.org/licenses/by/4.0/

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article