21
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Molecular phylogeny reveals the gradual evolutionary transition to soft-bodiedness in click-beetles and identifies sub-Saharan Africa as a cradle of diversity for Drilini (Coleoptera: Elateridae)

      , 1
      Zoological Journal of the Linnean Society
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Trends, rhythms, and aberrations in global climate 65 Ma to present.

          Since 65 million years ago (Ma), Earth's climate has undergone a significant and complex evolution, the finer details of which are now coming to light through investigations of deep-sea sediment cores. This evolution includes gradual trends of warming and cooling driven by tectonic processes on time scales of 10(5) to 10(7) years, rhythmic or periodic cycles driven by orbital processes with 10(4)- to 10(6)-year cyclicity, and rare rapid aberrant shifts and extreme climate transients with durations of 10(3) to 10(5) years. Here, recent progress in defining the evolution of global climate over the Cenozoic Era is reviewed. We focus primarily on the periodic and anomalous components of variability over the early portion of this era, as constrained by the latest generation of deep-sea isotope records. We also consider how this improved perspective has led to the recognition of previously unforeseen mechanisms for altering climate.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation.

            Beetles represent almost one-fourth of all described species, and knowledge about their relationships and evolution adds to our understanding of biodiversity. We performed a comprehensive phylogenetic analysis of Coleoptera inferred from three genes and nearly 1900 species, representing more than 80% of the world's recognized beetle families. We defined basal relationships in the Polyphaga supergroup, which contains over 300,000 species, and established five families as the earliest branching lineages. By dating the phylogeny, we found that the success of beetles is explained neither by exceptional net diversification rates nor by a predominant role of herbivory and the Cretaceous rise of angiosperms. Instead, the pre-Cretaceous origin of more than 100 present-day lineages suggests that beetle species richness is due to high survival of lineages and sustained diversification in a variety of niches.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Revisiting the insect mitochondrial molecular clock: the mid-Aegean trench calibration.

              Phylogenetic trees in insects are frequently dated by applying a "standard" mitochondrial DNA (mtDNA) clock estimated at 2.3% My(-1), but despite its wide use reliable calibration points have been lacking. Here, we used a well-established biogeographic barrier, the mid-Aegean trench separating the western and eastern Aegean archipelago, to estimate substitution rates in tenebrionid beetles. Cytochrome oxidase I (cox1) for six codistributed genera across 28 islands (444 individuals) on both sides of the mid-Aegean trench revealed 60 independently coalescing entities delimited with a mixed Yule-coalescent model. One representative per entity was used for phylogenetic analysis of mitochondrial (cox1, 16S rRNA) and nuclear (Mp20, 28S rRNA) genes. Six nodes marked geographically congruent east-west splits whose separation was largely contemporaneous and likely to reflect the formation of the mid-Aegean trench at 9-12 Mya. Based on these "known" dates, a divergence rate of 3.54% My(-1) for the cox1 gene (2.69% when combined with the 16S rRNA gene) was obtained under the preferred partitioning scheme and substitution model selected using Bayes factors. An extensive survey suggests that discrepancies in mtDNA substitution rates in the entomological literature can be attributed to the use of different substitution models, the use of different mitochondrial gene regions, mixing of intraspecific with interspecific data, and not accounting for variance in coalescent times or postseparation gene flow. Different treatments of these factors in the literature confound estimates of mtDNA substitution rates in opposing directions and obscure lineage-specific differences in rates when comparing data from various sources.
                Bookmark

                Author and article information

                Journal
                Zoological Journal of the Linnean Society
                Oxford University Press (OUP)
                0024-4082
                1096-3642
                June 03 2019
                June 03 2019
                Affiliations
                [1 ]Department of Zoology, Faculty of Science, Palacky University, Olomouc, Czech Republic
                Article
                10.1093/zoolinnean/zlz033
                ea38e164-c330-4f10-a574-2bba94d0e585
                © 2019

                https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model

                History

                Comments

                Comment on this article