70
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Parametric and non-parametric masking of randomness in sequence alignments can be improved and leads to better resolved trees

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Methods of alignment masking, which refers to the technique of excluding alignment blocks prior to tree reconstructions, have been successful in improving the signal-to-noise ratio in sequence alignments. However, the lack of formally well defined methods to identify randomness in sequence alignments has prevented a routine application of alignment masking. In this study, we compared the effects on tree reconstructions of the most commonly used profiling method (GBLOCKS) which uses a predefined set of rules in combination with alignment masking, with a new profiling approach (ALISCORE) based on Monte Carlo resampling within a sliding window, using different data sets and alignment methods. While the GBLOCKS approach excludes variable sections above a certain threshold which choice is left arbitrary, the ALISCORE algorithm is free of a priori rating of parameter space and therefore more objective.

          Results

          ALISCORE was successfully extended to amino acids using a proportional model and empirical substitution matrices to score randomness in multiple sequence alignments. A complex bootstrap resampling leads to an even distribution of scores of randomly similar sequences to assess randomness of the observed sequence similarity. Testing performance on real data, both masking methods, GBLOCKS and ALISCORE, helped to improve tree resolution. The sliding window approach was less sensitive to different alignments of identical data sets and performed equally well on all data sets. Concurrently, ALISCORE is capable of dealing with different substitution patterns and heterogeneous base composition. ALISCORE and the most relaxed GBLOCKS gap parameter setting performed best on all data sets. Correspondingly, Neighbor-Net analyses showed the most decrease in conflict.

          Conclusions

          Alignment masking improves signal-to-noise ratio in multiple sequence alignments prior to phylogenetic reconstruction. Given the robust performance of alignment profiling, alignment masking should routinely be used to improve tree reconstructions. Parametric methods of alignment profiling can be easily extended to more complex likelihood based models of sequence evolution which opens the possibility of further improvements.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Neighbor-net: an agglomerative method for the construction of phylogenetic networks.

          We present Neighbor-Net, a distance based method for constructing phylogenetic networks that is based on the Neighbor-Joining (NJ) algorithm of Saitou and Nei. Neighbor-Net provides a snapshot of the data that can guide more detailed analysis. Unlike split decomposition, Neighbor-Net scales well and can quickly produce detailed and informative networks for several hundred taxa. We illustrate the method by reanalyzing three published data sets: a collection of 110 highly recombinant Salmonella multi-locus sequence typing sequences, the 135 "African Eve" human mitochondrial sequences published by Vigilant et al., and a collection of 12 Archeal chaperonin sequences demonstrating strong evidence for gene conversion. Neighbor-Net is available as part of the SplitsTree4 software package.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An algorithm for progressive multiple alignment of sequences with insertions.

            Dynamic programming algorithms guarantee to find the optimal alignment between two sequences. For more than a few sequences, exact algorithms become computationally impractical, and progressive algorithms iterating pairwise alignments are widely used. These heuristic methods have a serious drawback because pairwise algorithms do not differentiate insertions from deletions and end up penalizing single insertion events multiple times. Such an unrealistically high penalty for insertions typically results in overmatching of sequences and an underestimation of the number of insertion events. We describe a modification of the traditional alignment algorithm that can distinguish insertion from deletion and avoid repeated penalization of insertions and illustrate this method with a pair hidden Markov model that uses an evolutionary scoring function. In comparison with a traditional progressive alignment method, our algorithm infers a greater number of insertion events and creates gaps that are phylogenetically consistent but spatially less concentrated. Our results suggest that some insertion/deletion "hot spots" may actually be artifacts of traditional alignment algorithms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genome-scale phylogeny and the detection of systematic biases.

              Phylogenetic inference from sequences can be misled by both sampling (stochastic) error and systematic error (nonhistorical signals where reality differs from our simplified models). A recent study of eight yeast species using 106 concatenated genes from complete genomes showed that even small internal edges of a tree received 100% bootstrap support. This effective negation of stochastic error from large data sets is important, but longer sequences exacerbate the potential for biases (systematic error) to be positively misleading. Indeed, when we analyzed the same data set using minimum evolution optimality criteria, an alternative tree received 100% bootstrap support. We identified a compositional bias as responsible for this inconsistency and showed that it is reduced effectively by coding the nucleotides as purines and pyrimidines (RY-coding), reinforcing the original tree. Thus, a comprehensive exploration of potential systematic biases is still required, even though genome-scale data sets greatly reduce sampling error.
                Bookmark

                Author and article information

                Journal
                Front Zool
                Frontiers in Zoology
                BioMed Central
                1742-9994
                2010
                31 March 2010
                : 7
                : 10
                Affiliations
                [1 ]Zoologisches Forschungsmuseum A. Koenig, Adenauerallee 160, 53113 Bonn, Germany
                [2 ]Biozentrum Grindel und Zoologisches Museum, Universität Hamburg, Martin-Luther-King Platz 3, 20146 Hamburg, Germany
                Article
                1742-9994-7-10
                10.1186/1742-9994-7-10
                2867768
                20356385
                ea3b7183-dda5-4c22-8cdf-ef39535d3456
                Copyright ©2010 Kück et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 9 December 2009
                : 31 March 2010
                Categories
                Methodology

                Animal science & Zoology
                Animal science & Zoology

                Comments

                Comment on this article