30
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Personal Sensing: Understanding Mental Health Using Ubiquitous Sensors and Machine Learning

      1 , 2 , 1

      Annual Review of Clinical Psychology

      Annual Reviews

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sensors in everyday devices, such as our phones, wearables, and computers, leave a stream of digital traces. Personal sensing refers to collecting and analyzing data from sensors embedded in the context of daily life with the aim of identifying human behaviors, thoughts, feelings, and traits. This article provides a critical review of personal sensing research related to mental health, focused principally on smartphones, but also including studies of wearables, social media, and computers. We provide a layered, hierarchical model for translating raw sensor data into markers of behaviors and states related to mental health. Also discussed are research methods as well as challenges, including privacy and problems of dimensionality. Although personal sensing is still in its infancy, it holds great promise as a method for conducting mental health research and as a clinical tool for monitoring at-risk populations and providing the foundation for the next generation of mobile health (or mHealth) interventions.

          Related collections

          Most cited references 62

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The Rise of Consumer Health Wearables: Promises and Barriers

          Lukasz Piwek and colleagues consider whether wearable technology can become a valuable asset for health care.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Deep Patient: An Unsupervised Representation to Predict the Future of Patients from the Electronic Health Records

            Secondary use of electronic health records (EHRs) promises to advance clinical research and better inform clinical decision making. Challenges in summarizing and representing patient data prevent widespread practice of predictive modeling using EHRs. Here we present a novel unsupervised deep feature learning method to derive a general-purpose patient representation from EHR data that facilitates clinical predictive modeling. In particular, a three-layer stack of denoising autoencoders was used to capture hierarchical regularities and dependencies in the aggregated EHRs of about 700,000 patients from the Mount Sinai data warehouse. The result is a representation we name “deep patient”. We evaluated this representation as broadly predictive of health states by assessing the probability of patients to develop various diseases. We performed evaluation using 76,214 test patients comprising 78 diseases from diverse clinical domains and temporal windows. Our results significantly outperformed those achieved using representations based on raw EHR data and alternative feature learning strategies. Prediction performance for severe diabetes, schizophrenia, and various cancers were among the top performing. These findings indicate that deep learning applied to EHRs can derive patient representations that offer improved clinical predictions, and could provide a machine learning framework for augmenting clinical decision systems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Harnessing Context Sensing to Develop a Mobile Intervention for Depression

              Background Mobile phone sensors can be used to develop context-aware systems that automatically detect when patients require assistance. Mobile phones can also provide ecological momentary interventions that deliver tailored assistance during problematic situations. However, such approaches have not yet been used to treat major depressive disorder. Objective The purpose of this study was to investigate the technical feasibility, functional reliability, and patient satisfaction with Mobilyze!, a mobile phone- and Internet-based intervention including ecological momentary intervention and context sensing. Methods We developed a mobile phone application and supporting architecture, in which machine learning models (ie, learners) predicted patients’ mood, emotions, cognitive/motivational states, activities, environmental context, and social context based on at least 38 concurrent phone sensor values (eg, global positioning system, ambient light, recent calls). The website included feedback graphs illustrating correlations between patients’ self-reported states, as well as didactics and tools teaching patients behavioral activation concepts. Brief telephone calls and emails with a clinician were used to promote adherence. We enrolled 8 adults with major depressive disorder in a single-arm pilot study to receive Mobilyze! and complete clinical assessments for 8 weeks. Results Promising accuracy rates (60% to 91%) were achieved by learners predicting categorical contextual states (eg, location). For states rated on scales (eg, mood), predictive capability was poor. Participants were satisfied with the phone application and improved significantly on self-reported depressive symptoms (betaweek = –.82, P < .001, per-protocol Cohen d = 3.43) and interview measures of depressive symptoms (betaweek = –.81, P < .001, per-protocol Cohen d = 3.55). Participants also became less likely to meet criteria for major depressive disorder diagnosis (bweek = –.65, P = .03, per-protocol remission rate = 85.71%). Comorbid anxiety symptoms also decreased (betaweek = –.71, P < .001, per-protocol Cohen d = 2.58). Conclusions Mobilyze! is a scalable, feasible intervention with preliminary evidence of efficacy. To our knowledge, it is the first ecological momentary intervention for unipolar depression, as well as one of the first attempts to use context sensing to identify mental health-related states. Several lessons learned regarding technical functionality, data mining, and software development process are discussed. Trial Registration Clinicaltrials.gov NCT01107041; http://clinicaltrials.gov/ct2/show/NCT01107041 (Archived by WebCite at http://www.webcitation.org/60CVjPH0n)
                Bookmark

                Author and article information

                Journal
                Annual Review of Clinical Psychology
                Annu. Rev. Clin. Psychol.
                Annual Reviews
                1548-5943
                1548-5951
                May 08 2017
                May 08 2017
                : 13
                : 1
                : 23-47
                Affiliations
                [1 ]Center for Behavioral Intervention Technologies and Department of Preventive Medicine, Northwestern University, Chicago, Illinois 60611;,
                [2 ]Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824;
                Article
                10.1146/annurev-clinpsy-032816-044949
                28375728
                © 2017

                Comments

                Comment on this article