75
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Self-report captures 27 distinct categories of emotion bridged by continuous gradients

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p id="d15056078e139">Claims about how reported emotional experiences are geometrically organized within a semantic space have shaped the study of emotion. Using statistical methods to analyze reports of emotional states elicited by 2,185 emotionally evocative short videos with richly varying situational content, we uncovered 27 varieties of reported emotional experience. Reported experience is better captured by categories such as “amusement” than by ratings of widely measured affective dimensions such as valence and arousal. Although categories are found to organize dimensional appraisals in a coherent and powerful fashion, many categories are linked by smooth gradients, contrary to discrete theories. Our results comprise an approximation of a geometric structure of reported emotional experience. </p><p class="first" id="d15056078e142">Emotions are centered in subjective experiences that people represent, in part, with hundreds, if not thousands, of semantic terms. Claims about the distribution of reported emotional states and the boundaries between emotion categories—that is, the geometric organization of the semantic space of emotion—have sparked intense debate. Here we introduce a conceptual framework to analyze reported emotional states elicited by 2,185 short videos, examining the richest array of reported emotional experiences studied to date and the extent to which reported experiences of emotion are structured by discrete and dimensional geometries. Across self-report methods, we find that the videos reliably elicit 27 distinct varieties of reported emotional experience. Further analyses revealed that categorical labels such as amusement better capture reports of subjective experience than commonly measured affective dimensions (e.g., valence and arousal). Although reported emotional experiences are represented within a semantic space best captured by categorical labels, the boundaries between categories of emotion are fuzzy rather than discrete. By analyzing the distribution of reported emotional states we uncover gradients of emotion—from anxiety to fear to horror to disgust, calmness to aesthetic appreciation to awe, and others—that correspond to smooth variation in affective dimensions such as valence and dominance. Reported emotional states occupy a complex, high-dimensional categorical space. In addition, our library of videos and an interactive map of the emotional states they elicit ( <a data-untrusted="" href="https://s3-us-west-1.amazonaws.com/emogifs/map.html" id="d15056078e144" target="xrefwindow">https://s3-us-west-1.amazonaws.com/emogifs/map.html</a>) are made available to advance the science of emotion. </p>

          Related collections

          Most cited references75

          • Record: found
          • Abstract: not found
          • Article: not found

          New Well-being Measures: Short Scales to Assess Flourishing and Positive and Negative Feelings

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Empathy for pain involves the affective but not sensory components of pain.

            Our ability to have an experience of another's pain is characteristic of empathy. Using functional imaging, we assessed brain activity while volunteers experienced a painful stimulus and compared it to that elicited when they observed a signal indicating that their loved one--present in the same room--was receiving a similar pain stimulus. Bilateral anterior insula (AI), rostral anterior cingulate cortex (ACC), brainstem, and cerebellum were activated when subjects received pain and also by a signal that a loved one experienced pain. AI and ACC activation correlated with individual empathy scores. Activity in the posterior insula/secondary somatosensory cortex, the sensorimotor cortex (SI/MI), and the caudal ACC was specific to receiving pain. Thus, a neural response in AI and rostral ACC, activated in common for "self" and "other" conditions, suggests that the neural substrate for empathic experience does not involve the entire "pain matrix." We conclude that only that part of the pain network associated with its affective qualities, but not its sensory qualities, mediates empathy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Core affect and the psychological construction of emotion.

              At the heart of emotion, mood, and any other emotionally charged event are states experienced as simply feeling good or bad, energized or enervated. These states--called core affect--influence reflexes, perception, cognition, and behavior and are influenced by many causes internal and external, but people have no direct access to these causal connections. Core affect can therefore be experienced as free-floating (mood) or can be attributed to some cause (and thereby begin an emotional episode). These basic processes spawn a broad framework that includes perception of the core-affect-altering properties of stimuli, motives, empathy, emotional meta-experience, and affect versus emotion regulation; it accounts for prototypical emotional episodes, such as fear and anger, as core affect attributed to something plus various nonemotional processes.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proc Natl Acad Sci USA
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                September 19 2017
                September 19 2017
                : 114
                : 38
                : E7900-E7909
                Article
                10.1073/pnas.1702247114
                5617253
                28874542
                ea4038db-3a37-4e65-9889-e7f88e53d3f9
                © 2017

                http://www.pnas.org/site/misc/userlicense.xhtml

                History

                Comments

                Comment on this article