2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      How unusual was autumn 2006 in Europe?

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The temperatures in large parts of Europe have been record high during the meteorological autumn of 2006. Compared to 1961-1990, the 2m temperature was more than three degrees Celsius above normal from the North side of the Alps to southern Norway. This made it by far the warmest autumn on record in the United Kingdom, Belgium, the Netherlands, Denmark, Germany and Switzerland, with the records in Central England going back to 1659, in the Netherlands to 1706 and in Denmark to 1768. Assuming that the mean of the temperature distribution changes proportional to the global mean temperature, but the shape remains the same includes to first order the effects of global warming. Even under this assumption the autumn temperatures were very unusual, with estimates of the return time of 200 to 2000 years in this region. The lower bound of the 95% confidence interval is more than 100 to 300 years. Climate models that simulate the current atmospheric circulation well underestimate the observed mean rise in autumn temperatures. They do not simulate a change in the shape of the distribution that would increase the probability of warm events under global warming. This implies that the warm autumn 2006 either was a very rare coincidence, or the local temperature rise is much stronger than modelled, or non-linear physics that is missing from these models increases the probability of warm extremes.

          Related collections

          Most cited references11

          • Record: found
          • Abstract: not found
          • Article: not found

          Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Land-atmosphere coupling and climate change in Europe.

            Increasing greenhouse gas concentrations are expected to enhance the interannual variability of summer climate in Europe and other mid-latitude regions, potentially causing more frequent heatwaves. Climate models consistently predict an increase in the variability of summer temperatures in these areas, but the underlying mechanisms responsible for this increase remain uncertain. Here we explore these mechanisms using regional simulations of recent and future climatic conditions with and without land-atmosphere interactions. Our results indicate that the increase in summer temperature variability predicted in central and eastern Europe is mainly due to feedbacks between the land surface and the atmosphere. Furthermore, they suggest that land-atmosphere interactions increase climate variability in this region because climatic regimes in Europe shift northwards in response to increasing greenhouse gas concentrations, creating a new transitional climate zone with strong land-atmosphere coupling in central and eastern Europe. These findings emphasize the importance of soil-moisture-temperature feedbacks (in addition to soil-moisture-precipitation feedbacks) in influencing summer climate variability and the potential migration of climate zones with strong land-atmosphere coupling as a consequence of global warming. This highlights the crucial role of land-atmosphere interactions in future climate change.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Ocean Circulation and Tropical Variability in the Coupled Model ECHAM5/MPI-OM

                Bookmark

                Author and article information

                Journal
                23 November 2007
                Article
                0711.3720
                ea5a6b53-bbac-4a9a-9c4e-82ac0295fbfd
                History
                Custom metadata
                Clim. Past, 3, 659-668, 2007
                physics.ao-ph

                Comments

                Comment on this article