11
views
0
recommends
+1 Recommend
1 collections
    0
    shares

          The flagship journal of the Society for Endocrinology. Learn more

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Serum metabolomic analysis of the effect of exercise on nonalcoholic fatty liver disease

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          Exercise benefits people with nonalcoholic fatty liver disease (NAFLD). The aim of this study was to identify a panel of biomarkers and to provide the possible mechanism for the effect of exercise on NAFLD patients via an untargeted mass spectrometry-based serum metabolomics study.

          Methods

          NAFLD patients were classified randomly into a control group ( n = 74) and a 6-month vigorous exercise ( n = 68) group. Differences in serum metabolic profiles were analyzed using untargeted ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) technology. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were used to validate the differences between these two groups, and altered metabolites were obtained by ANOVA (fold change >2, P < 0.05) and identified with the online database Metlin and an in-house database.

          Results

          Metabolic profiling and multiple statistical analyses of the serum samples indicated significant differences between the NAFLD patients in the control and the 6-month vigorous exercise groups. Finally, 36 metabolites were identified between the control vs exercise groups. These metabolites were mainly associated with glycerophospholipid- and sphingolipid-related pathways.

          Conclusion

          Our study demonstrates that glycerophospholipid and sphingolipid alterations may contribute to the mechanism underlying the effect of exercise on NAFLD patients. A LC-MS-based metabolomics approach has a potential value for screening exercise-induced biomarkers.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Review: The role of insulin resistance in nonalcoholic fatty liver disease.

          Insulin resistance is an almost universal finding in nonalcoholic fatty liver disease (NAFLD). This review outlines the evidence linking insulin resistance and NAFLD, explores whether liver fat is a cause or consequence of insulin resistance, and reviews the current evidence for treatment of NAFLD. Evidence from epidemiological, experimental, and clinical research studies investigating NAFLD and insulin resistance was reviewed. Insulin resistance in NAFLD is characterized by reductions in whole-body, hepatic, and adipose tissue insulin sensitivity. The mechanisms underlying the accumulation of fat in the liver may include excess dietary fat, increased delivery of free fatty acids to the liver, inadequate fatty acid oxidation, and increased de novo lipogenesis. Insulin resistance may enhance hepatic fat accumulation by increasing free fatty acid delivery and by the effect of hyperinsulinemia to stimulate anabolic processes. The impact of weight loss, metformin, and thiazolidinediones, all treatments aimed at improving insulin sensitivity, as well as other agents such as vitamin E, have been evaluated in patients with NAFLD and have shown some benefit. However, most intervention studies have been small and uncontrolled. Insulin resistance is a major feature of NAFLD that, in some patients, can progress to steatohepatitis. Treatments aimed at reducing insulin resistance have had some success, but larger placebo-controlled studies are needed to fully establish the efficacy of these interventions and possibly others in reducing the deleterious effects of fat accumulation in the liver.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The ratio of phosphatidylcholine to phosphatidylethanolamine influences membrane integrity and steatohepatitis.

            Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) are major phospholipids in mammalian membranes. In liver, PC is synthesized via the choline pathway or by methylation of PE via phosphatidylethanolamine N-methyltransferase (PEMT). Pemt(-/-) mice fed a choline-deficient (CD) diet develop rapid steatohepatitis leading to liver failure. Steatosis is observed in CD mice that lack both PEMT and multiple drug-resistant protein 2 (MDR2), required for PC secretion into bile. We demonstrate that liver failure in CD-Pemt(-/-) mice is due to loss of membrane integrity caused by a decreased PC/PE ratio. The CD-Mdr2(-/-)/Pemt(-/-) mice escape liver failure by maintaining a normal PC/PE ratio. Manipulation of PC/PE levels suggests that this ratio is a key regulator of cell membrane integrity and plays a role in the progression of steatosis into steatohepatitis. The results have clinical implications as patients with nonalcoholic steatohepatitis have a decreased ratio of PC to PE compared to control livers.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The plasma lipidomic signature of nonalcoholic steatohepatitis.

              Specific alterations in hepatic lipid composition characterize the spectrum of nonalcoholic fatty liver disease (NAFLD), which extends from nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH). However, the plasma lipidome of NAFLD and whether NASH has a distinct plasma lipidomic signature are unknown. A comprehensive analysis of plasma lipids and eicosanoid metabolites quantified by mass spectrometry was performed in NAFL (n = 25) and NASH (n = 50) subjects and compared with lean normal controls (n = 50). The key findings include significantly increased total plasma monounsaturated fatty acids driven by palmitoleic (16:1 n7) and oleic (18:1 n9) acids content (P < 0.01 for both acids in both NAFL and NASH). The levels of palmitoleic acid, oleic acid, and palmitoleic acid to palmitic acid (16:0) ratio were significantly increased in NAFLD across multiple lipid classes. Linoleic acid (8:2n6) was decreased (P < 0.05), with a concomitant increase in gamma-linolenic (18:3n6) and dihomo gamma-linolenic (20:3n6) acids in both NAFL and NASH (P < 0.001 for most lipid classes). The docosahexanoic acid (22:6 n3) to docosapentenoic acid (22:5n3) ratio was significantly decreased within phosphatidylcholine (PC), and phosphatidylethanolamine (PE) pools, which was most marked in NASH subjects (P < 0.01 for PC and P < 0.001 for PE). The total plasmalogen levels were significantly decreased in NASH compared with controls (P < 0.05). A stepwise increase in lipoxygenase (LOX) metabolites 5(S)-hydroxyeicosatetraenoic acid (5-HETE), 8-HETE, and 15-HETE characterized progression from normal to NAFL to NASH. The level of 11-HETE, a nonenzymatic oxidation product of arachidonic (20:4) acid, was significantly increased in NASH only. Although increased lipogenesis, desaturases, and LOX activities characterize NAFL and NASH, impaired peroxisomal polyunsaturated fatty acid (PUFA) metabolism and nonenzymatic oxidation is associated with progression to NASH.
                Bookmark

                Author and article information

                Journal
                Endocr Connect
                Endocr Connect
                EC
                Endocrine Connections
                Bioscientifica Ltd (Bristol )
                2049-3614
                April 2019
                01 March 2019
                : 8
                : 4
                : 299-308
                Affiliations
                [1 ]Xiamen Diabetes Institute , The First Affiliated Hospital of Xiamen University, Xiamen, China
                [2 ]Department of Electronic Science , State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, China
                [3 ]Institute of Drug Discovery Technology , Ningbo University, Ningbo, China
                Author notes
                Correspondence should be addressed to Z Chen or X Li: chenz@ 123456xmu.edu.cn or xmlixuejun@ 123456163.com

                *(J Li and Y Zhao contributed equally to this work)

                Article
                EC-19-0023
                10.1530/EC-19-0023
                6432873
                30822271
                ea61df23-6090-4260-8469-c409f8dcbcf4
                © 2019 The authors

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

                History
                : 12 February 2019
                : 01 March 2019
                Categories
                Research

                metabolomics,ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry,exercise,nonalcoholic fatty liver disease

                Comments

                Comment on this article