15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular transitions in early progenitors during human cord blood hematopoiesis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hematopoietic stem cells ( HSCs) give rise to diverse cell types in the blood system, yet our molecular understanding of the early trajectories that generate this enormous diversity in humans remains incomplete. Here, we leverage Drop‐seq, a massively parallel single‐cell RNA sequencing (scRNA‐seq) approach, to individually profile 20,000 progenitor cells from human cord blood, without prior enrichment or depletion for individual lineages based on surface markers. Our data reveal a transcriptional compendium of progenitor states in human cord blood, representing four committed lineages downstream from HSC, alongside the transcriptional dynamics underlying fate commitment. We identify intermediate stages that simultaneously co‐express “primed” programs for multiple downstream lineages, and also observe striking heterogeneity in the early molecular transitions between myeloid subsets. Integrating our data with a recently published sc RNA‐seq dataset from human bone marrow, we illustrate the molecular similarity between these two commonly used systems and further explore the chromatin dynamics of “primed” transcriptional programs based on ATAC‐seq. Finally, we demonstrate that Drop‐seq data can be utilized to identify new heterogeneous surface markers of cell state that correlate with functional output.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular regulation of stem cell quiescence.

          Subsets of mammalian adult stem cells reside in the quiescent state for prolonged periods of time. This state, which is reversible, has long been viewed as dormant and with minimal basal activity. Recent advances in adult stem cell isolation have provided insights into the epigenetic, transcriptional and post-transcriptional control of quiescence and suggest that quiescence is an actively maintained state in which signalling pathways are involved in maintaining a poised state that allows rapid activation. Deciphering the molecular mechanisms regulating adult stem cell quiescence will increase our understanding of tissue regeneration mechanisms and how they are dysregulated in pathological conditions and in ageing.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification of clonogenic common lymphoid progenitors in mouse bone marrow.

            The existence of a common lymphoid progenitor that can only give rise to T cells, B cells, and natural killer (NK) cells remains controversial and constitutes an important gap in the hematopoietic lineage maps. Here, we report that the Lin(-)IL-7R(+)Thy-1(-)Sca-1loc-Kit(lo) population from adult mouse bone marrow possessed a rapid lymphoid-restricted (T, B, and NK) reconstitution capacity in vivo but completely lacked myeloid differentiation potential either in vivo or in vitro. A single Lin(-)IL-7R(+)Thy-1(-)Sca-1loc-Kit(lo) cell could generate at least both T and B cells. These data provide direct evidence for the existence of common lymphoid progenitors in sites of early hematopoiesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Extracting a Cellular Hierarchy from High-dimensional Cytometry Data with SPADE

              Multiparametric single-cell analysis is critical for understanding cellular heterogeneity. Despite recent technological advances in single-cell measurements, methods for analyzing high-dimensional single-cell data are often subjective, labor intensive and require prior knowledge of the biological system under investigation. To objectively uncover cellular heterogeneity from single-cell measurements, we present a novel computational approach, Spanning-tree Progression Analysis of Density-normalized Events (SPADE). We applied SPADE to cytometry data of mouse and human bone marrow. In both cases, SPADE organized cells in a hierarchy of related phenotypes that partially recapitulated well-described patterns of hematopoiesis. In addition, SPADE produced a map of intracellular signal activation across the landscape of human hematopoietic development. SPADE revealed a functionally distinct cell population, natural killer (NK) cells, without using any NK-specific parameters. SPADE is a versatile method that facilitates the analysis of cellular heterogeneity, the identification of cell types, and comparison of functional markers in response to perturbations.
                Bookmark

                Author and article information

                Contributors
                rsatija@nygenome.org
                Journal
                Mol Syst Biol
                Mol. Syst. Biol
                10.1002/(ISSN)1744-4292
                MSB
                msb
                Molecular Systems Biology
                John Wiley and Sons Inc. (Hoboken )
                1744-4292
                15 March 2018
                March 2018
                : 14
                : 3 ( doiID: 10.1002/msb.v14.3 )
                : e8041
                Affiliations
                [ 1 ] New York Genome Center New York NY USA
                [ 2 ] Center for Genomics and Systems Biology New York University New York NY USA
                Author notes
                [*] [* ]Corresponding author. Tel: +1 646 977 7000; E‐mail: rsatija@ 123456nygenome.org
                Author information
                http://orcid.org/0000-0001-9448-8833
                Article
                MSB178041
                10.15252/msb.20178041
                5852373
                29545397
                ea6c23bd-af6f-4851-be22-01b6193a9495
                © 2018 The Authors. Published under the terms of the CC BY 4.0 license

                This is an open access article under the terms of the Creative Commons Attribution 4.0 License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 09 October 2017
                : 07 February 2018
                : 12 February 2018
                Page count
                Figures: 11, Tables: 0, Pages: 20, Words: 18285
                Funding
                Funded by: New York Genome Center
                Categories
                Article
                Articles
                Custom metadata
                2.0
                msb178041
                March 2018
                Converter:WILEY_ML3GV2_TO_NLMPMC version:version=5.3.2.2 mode:remove_FC converted:15.03.2018

                Quantitative & Systems biology
                hematopoiesis,single cells,single‐cell rna‐seq,transcriptional dynamics,development & differentiation,genome-scale & integrative biology,transcription

                Comments

                Comment on this article