1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Protective Efficacy of a Dietary Supplement Based on Forskolin, Homotaurine, Spearmint Extract, and Group B Vitamins in a Mouse Model of Optic Nerve Injury

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Glaucoma is a multifactorial blinding disease with a major inflammatory component ultimately leading to apoptotic retinal ganglion cell (RGC) death. Pharmacological treatments lowering intraocular pressure can help slow or prevent vision loss although the damage caused by glaucoma cannot be reversed. Recently, nutritional approaches have been evaluated for their efficacy in preventing degenerative events in the retina although mechanisms underlying their effectiveness remain to be elucidated. Here, we evaluated the efficacy of a diet supplement consisting of forskolin, homotaurine, spearmint extract, and vitamins of the B group in counteracting retinal dysfunction in a mouse model of optic nerve crush (ONC) used as an in vivo model of glaucoma. After demonstrating that ONC did not affect retinal vasculature by fluorescein angiography, we determined the effect of the diet supplement on the photopic negative response (PhNR) whose amplitude is strictly related to RGC integrity and is therefore drastically reduced in concomitance with RGC death. We found that the diet supplementation prevents the reduction of PhNR amplitude ( p < 0.001) and concomitantly counteracts RGC death, as in supplemented mice, RGC number assessed immunohistochemically is significantly higher than that in non-supplemented animals ( p < 0.01). Major determinants of the protective efficacy of the compound are due to a reduction of ONC-associated cytokine secretion leading to decreased levels of apoptotic markers that in supplemented mice are significantly lower than in non-supplemented animals ( p < 0.001), ultimately causing RGC survival and ameliorated visual dysfunction. Overall, our data suggest that the above association of compounds plays a neuroprotective role in this mouse model of glaucoma thus offering a new perspective in inflammation-associated neurodegenerative diseases of the inner retina.

          Related collections

          Most cited references 57

          • Record: found
          • Abstract: found
          • Article: not found

          Axotomy-induced retinal ganglion cell death in adult mice: quantitative and topographic time course analyses.

          The fate of retinal ganglion cells after optic nerve injury has been thoroughly described in rat, but not in mice, despite the fact that this species is amply used as a model to study different experimental paradigms that affect retinal ganglion cell population. Here we have analyzed, quantitatively and topographically, the course of mice retinal ganglion cells loss induced by intraorbital nerve transection. To do this, we have doubly identified retinal ganglion cells in all retinas by tracing them from their main retinorecipient area, the superior colliculi, and by their expression of BRN3A (product of Pou4f1 gene). In rat, this transcription factor is expressed by a majority of retinal ganglion cells; however in mice it is not known how many out of the whole population of these neurons express it. Thus, in this work we have assessed, as well, the total population of BRN3A positive retinal ganglion cells. These were automatically quantified in all whole-mounted retinas using a newly developed routine. In control retinas, traced-retinal ganglion cells were automatically quantified, using the previously reported method (Salinas-Navarro et al., 2009b). After optic nerve injury, though, traced-retinal ganglion cells had to be manually quantified by retinal sampling and their total population was afterwards inferred. In naïve whole-mounts, the mean (±standard deviation) total number of traced-retinal ganglion cells was 40,437(±3196) and of BRN3A positive ones was 34,697(±1821). Retinal ganglion cell loss was first significant for both markers 5 days post-axotomy and by day 21, the last time point analyzed, only 15% or 12% of traced or BRN3A positive retinal ganglion cells respectively, survived. Isodensity maps showed that, in control retinas, BRN3A and traced-retinal ganglion cells were distributed similarly, being densest in the dorsal retina along the naso-temporal axis. After axotomy the progressive loss of BRN3A positive retinal ganglion cells was diffuse and affected the entire retina. In conclusion, this is the first study assessing the values, in terms of total number and density, of the retinal ganglion cells surviving axotomy from 2 till 21 days post-lesion. Besides, we have demonstrated that BRN3A is expressed by 85.6% of the total retinal ganglion cell population, and because BRN3A positive retinal ganglion cells show the same spatial distribution and temporal course of degeneration than traced ones, BRN3A is a reliable marker to identify, quantify and assess, ex-vivo, retinal ganglion cell loss in this species. Copyright © 2011 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Interleukin-6 protects retinal ganglion cells from pressure-induced death.

            The response of retinal ganglion cells (RGCs) to ocular pressure in glaucoma likely involves signals from astrocytes and microglia. How glia-derived factors influence RGC survival at ambient and elevated pressure and whether the inflammatory cytokine interleukin-6 (IL-6) is a contributing factor were investigated. Primary cultures of retinal astrocytes, microglia, and RGCs were prepared using immunomagnetic separation. Comparisons were made of RGC survival at ambient and elevated pressure (+70 mm Hg) and with pressure-conditioned medium from glia with, and depleted of, IL-6. Pressure elevated for 24 to 48 hours reduced RGC density, increased TUNEL labeling, and upregulated several apoptotic genes, including the early immediate genes c-jun and jun-B. Pressure-conditioned medium from astrocytes reduced RGC survival another 38%, while microglia medium returned RGC survival to ambient levels. These effects were unrelated to IL-6 in microglia medium. Neither astrocyte- nor microglia-conditioned medium affected ambient RGC survival unless depleted of IL-6, which induced a 63% and a 18% decrease in RGCs, respectively. Recombinant IL-6 equivalent to levels in glia-conditioned medium doubled RGC survival at elevated pressure. For RGCs at ambient pressure, IL-6 secreted from astrocytes and microglia under pressure is adequate to abate other proapoptotic signals from these glia. For RGCs challenged by elevated pressure, decreased IL-6 in astrocyte medium is insufficient to counteract these signals. Increased IL-6 in microglia medium counters not only proapoptotic signals from these cells but also the pressure-induced apoptotic cascade intrinsic to RGCs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              α-Lipoic Acid Antioxidant Treatment Limits Glaucoma-Related Retinal Ganglion Cell Death and Dysfunction

              Oxidative stress has been implicated in neurodegenerative diseases, including glaucoma. However, due to the lack of clinically relevant models and expense of long-term testing, few studies have modeled antioxidant therapy for prevention of neurodegeneration. We investigated the contribution of oxidative stress to the pathogenesis of glaucoma in the DBA/2J mouse model of glaucoma. Similar to other neurodegenerative diseases, we observed lipid peroxidation and upregulation of oxidative stress-related mRNA and protein in DBA/2J retina. To test the role of oxidative stress in disease progression, we chose to deliver the naturally occurring, antioxidant α-lipoic acid (ALA) to DBA/2J mice in their diet. We used two paradigms for ALA delivery: an intervention paradigm in which DBA/2J mice at 6 months of age received ALA in order to intervene in glaucoma development, and a prevention paradigm in which DBA/2J mice were raised on a diet supplemented with ALA, with the goal of preventing glaucoma development. At 10 and 12 months of age (after 4 and 11 months of dietary ALA respectively), we measured changes in genes and proteins related to oxidative stress, retinal ganglion cell (RGC) number, axon transport, and axon number and integrity. Both ALA treatment paradigms showed increased antioxidant gene and protein expression, increased protection of RGCs and improved retrograde transport compared to control. Measures of lipid peroxidation, protein nitrosylation, and DNA oxidation in retina verified decreased oxidative stress in the prevention and intervention paradigms. These data demonstrate the utility of dietary therapy for reducing oxidative stress and improving RGC survival in glaucoma.
                Bookmark

                Author and article information

                Journal
                Nutrients
                Nutrients
                nutrients
                Nutrients
                MDPI
                2072-6643
                03 December 2019
                December 2019
                : 11
                : 12
                Affiliations
                [1 ]Department of Biology, University of Pisa, via San Zeno, 31, 56127 Pisa, Italy maurizio.cammalleri@ 123456unipi.it (M.C.)
                [2 ]Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy
                [3 ]Sooft Italia SpA, Contrada Molino 17, 63833 Montegiorgio (FM), Italy; dario.rusciano@ 123456sooft.it
                Author notes
                [* ]Correspondence: massimo.dalmonte@ 123456unipi.it (M.D.M.); paola.bagnoli@ 123456unipi.it (P.B.); Tel.: +39-050-2211426 (M.D.M.)
                Article
                nutrients-11-02931
                10.3390/nu11122931
                6950150
                31816880
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                Categories
                Article

                Comments

                Comment on this article