23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Anti-platelet therapy holds promises in treating adenomyosis: experimental evidence

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Recently emerging evidence indicates that endometriotic lesions are wounds undergoing repeated tissue injury and repair (ReTIAR), and platelets induce epithelial-mesenchymal transition (EMT), fibroblast-to-myofibroblast transdifferentiation (FMT), leading ultimately to fibrosis. Due to the commonality of cyclic bleeding as in endometriosis, adenomyotic lesions are also wounds that undergo ReTIAR, and we have recently provided evidence corroborating platelet-induced EMT, FMT and fibrogenesis in adenomyosis. This study sought to evaluate the effect of antiplatelet therapy in a mouse model of adenomyosis.

          Methods

          Adenomyosis was induced in 57 female ICR mice with neonatal dosing of tamoxifen, while another 12 (group C) were dosed with solvent only, serving as a blank control. Starting from 4 weeks after birth, hotplate test was administrated to all mice every 4 weeks. At the 16th week, all mice with induced adenomyosis were randomly divided into 6 groups: untreated, low- and high-dose Ozagrel, low- and high-dose anti-mouse GPIbα polyclonal IgG antibody to deplete platelets, and isotype-matched inert IgG non-immune antibody. Group C received no treatment. After 3 weeks of treatment, they were hotplate tested again, their uterine horns and brains were harvested, and a blood sample was taken to measure the plasma corticosterone level by ELISA. The left uterine horn was used for immunohistochemistry analysis. The brainstem nucleus raphe magnus (NRM) sections were subjected to immunofluorescence staining for GAD65. The depth of myometrial infiltration and uterine contractility were evaluated.

          Results

          We found that both Ozagrel treatment and platelet depletion dose-dependently suppressed myometrial infiltration, improved generalized hyperalgesia, reduced uterine contractility, and lowered plasma corticosterone levels, improved the expression of some proteins known to be involved in adenomyosis and slowed down the process of fibrogenesis. It also elevated the number of GAD65-expressing neurons in the brainstem NRM, possibly boosting the GABAergic inhibition of pain due to adenomyosis.

          Conclusion

          This study further provides evidence that platelets play important roles in the development of adenomyosis. Anti-platelet treatment is efficacious in suppression of myometrial infiltration, improving generalized hyperalgesia, reducing uterine hyperactivity and systemic corticosterone levels. Collectively, these results demonstrate that anti-platelet therapy seems to be promising for treating adenomyosis.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s12958-016-0198-1) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: not found
          • Book: not found

          R: A Language and Environment for Statistical Computing.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rolling cell adhesion.

            Rolling adhesion on vascular surfaces is the first step in recruiting circulating leukocytes, hematopoietic progenitors, or platelets to specific organs or to sites of infection or injury. Rolling requires the rapid yet balanced formation and dissociation of adhesive bonds in the challenging environment of blood flow. This review explores how structurally distinct adhesion receptors interact through mechanically regulated kinetics with their ligands to meet these challenges. Remarkably, increasing force applied to adhesive bonds first prolongs their lifetimes (catch bonds) and then shortens their lifetimes (slip bonds). Catch bonds mediate the counterintuitive phenomenon of flow-enhanced rolling adhesion. Force-regulated disruptions of receptor interdomain or intradomain interactions remote from the ligand-binding surface generate catch bonds. Adhesion receptor dimerization, clustering in membrane domains, and interactions with the cytoskeleton modulate the forces applied to bonds. Both inside-out and outside-in cell signals regulate these processes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Epigenetic suppression of GAD65 expression mediates persistent pain

              Chronic pain is a common neurological disease involving lasting, multifaceted maladaptations from gene modulations to synaptic malfunctions and to emotional disorders. Sustained pathological stimuli in many diseases alter output activities of certain genes through epigenetic modifications, but it is unclear how epigenetic mechanisms operate in the development of chronic pain. We demonstrate here that, in the rat brainstem nucleus raphe magnus, which is important for central mechanisms of chronic pain, persistent inflammatory and neuropathic pain epigenetically suppresses gad65 activities through histone deacetylase (HDAC)-mediated histone hypoacetylation, resulting in impaired GABA synaptic inhibition. gad65 knockout mice display similar sensitized pain behavior and impaired GABA synaptic function in the brainstem neurons. HDAC inhibitors overwhelmingly increase gad65 activities, restore GABA synaptic function and relieve the sensitized pain behavior, but not in gad65 knockout mice. These findings suggest GAD65 and HDACs as potential therapeutic targets in an epigenetic approach to the treatment of chronic pain.
                Bookmark

                Author and article information

                Contributors
                echo2005go@126.com
                w31chenyumei@126.com
                shen_xl@yeah.net
                lxsdoc@hotmail.com
                hoxa10@outlook.com
                Journal
                Reprod Biol Endocrinol
                Reprod. Biol. Endocrinol
                Reproductive Biology and Endocrinology : RB&E
                BioMed Central (London )
                1477-7827
                10 October 2016
                10 October 2016
                2016
                : 14
                : 66
                Affiliations
                [1 ]Department of Obstetrics and Gynecology, The People’s Hospital, Wenzhou, Zhejiang 325800 China
                [2 ]Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, 200011 China
                [3 ]Shanghai Obstetrics and Gynecology Hospital, Fudan University, 419 Fangxie Road, Shanghai, 200011 China
                Article
                198
                10.1186/s12958-016-0198-1
                5057470
                27724926
                ea78c700-a171-435c-9d4b-363cab4e86c1
                © The Author(s). 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 17 August 2016
                : 23 September 2016
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001809, National Natural Science Foundation of China;
                Award ID: 81530040
                Award ID: 81370695
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100004731, Natural Science Foundation of Zhejiang Province;
                Award ID: Y14H040004
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2016

                Human biology
                adenomyosis,generalized hyperalgesia,hotplate latency,mouse,ozagrel,platelet,uterine contractility

                Comments

                Comment on this article