212
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Analysis of chemokine and chemokine receptor expression in squamous cell carcinoma of the head and neck (SCCHN) cell lines

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The purpose of this work was to analyze chemokine and chemokine receptor expression in untreated and in irradiated squamous cell carcinoma of the head and neck (SCCHN) tumor cell lines, aiming at the establishment of assays to test for the relevance of chemokine and chemokine receptor expression in the response of SCCHN to radiotherapy and radiochemotherapy. Five low passage and 10 established SCCHN lines, as well as two normal cell lines, were irradiated at 2 Gy or sham-irradiated, and harvested between 1 and 48 h after treatment. For chemokines with CC and CXC structural motifs and their receptors, transcript levels of target and reference genes were quantified relatively by real-time PCR. In addition, CXCL1 and CXCL12 protein expression was analyzed by ELISA. A substantial variation in chemokine and chemokine receptor expression between SCCHN was detected. Practically, all cell lines expressed CCL5 and CCL20, while CCL2 was expressed in normal cells and in some of the tumor cell lines. CXCL1, CXCL2, CXCL3, CXCL10, and CXCL11 were expressed in the vast majority of the cell lines, while the expression of CXCL9 and CXCL12 was restricted to fibroblasts and few tumor cell lines. None of the analyzed cell lines expressed the chemokines CCL3, CCL4, or CCL19. Of the receptors, transcript expression of CCR1, CCR2, CCR3, CCR5, CCR7, CCXR2, and CCXR3 was not detected, and CCR6, CXCR1, and CXCR4 expression was restricted to few tumor cells. Radiation caused up- and down-regulation with respect to chemokine expressions, while for chemokine receptor expressions down-regulations were prevailing. CXCL1 and CXCL12 protein expression corresponded well with the mRNA expression. We conclude that the substantial variation in chemokine and chemokine receptor expression between SCCHN offer opportunities for the establishment of assays to test for the relevance of chemokine and chemokine receptor expression in the response of SCCHN to radiotherapy and radiochemotherapy.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Radiation-induced IFN-gamma production within the tumor microenvironment influences antitumor immunity.

          Alterations to the tumor microenvironment following localized irradiation may influence the effectiveness of subsequent immunotherapy. The objective of this study was to determine how IFN-gamma influences the inflammatory response within this dynamic environment following radiotherapy. B16/OVA melanoma cells were implanted into C57BL/6 (wild-type (WT)) and IFN-gamma-deficient (IFN-gamma-/-) mice. Seven days after implantation, mice received 15 Gy of localized tumor irradiation and were assessed 7 days later. Irradiation up-regulated the expression of VCAM-1 on the vasculature of tumors grown in WT but not in IFN-gamma-/- mice. Levels of the IFN-gamma-inducible chemokines MIG and IFN-gamma-inducible protein 10 were decreased in irradiated tumors from IFN-gamma-/- mice compared with WT. In addition to inducing molecular cues necessary for T cell infiltration, surface MHC class I expression is also up-regulated in response to IFN-gamma produced after irradiation. The role of IFN-gamma signaling in tumor cells on class I expression was tested using B16/OVA cells engineered to overexpress a dominant negative mutant IFN-gamma receptor (B16/OVA/DNM). Following implantation and treatment, expression of surface class I on tumor cells in vivo was increased in B16/OVA, but not in B16/OVA/DNM tumors, suggesting IFN-gamma acts directly on tumor cells to induce class I up-regulation. These increases in MHC class I expression correlated with greater levels of activated STAT1. Thus, IFN-gamma is instrumental in creating a tumor microenvironment conducive for T cell infiltration and tumor cell target recognition.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Radiation-induced CXCL16 release by breast cancer cells attracts effector T cells.

            Recruitment of effector T cells to inflamed peripheral tissues is regulated by chemokines and their receptors, but the factors regulating recruitment to tumors remain largely undefined. Ionizing radiation (IR) therapy is a common treatment modality for breast and other cancers. Used as a cytocidal agent for proliferating cancer cells, IR in combination with immunotherapy has been shown to promote immune-mediated tumor destruction in preclinical studies. In this study we demonstrate that IR markedly enhanced the secretion by mouse and human breast cancer cells of CXCL16, a chemokine that binds to CXCR6 on Th1 and activated CD8 effector T cells, and plays an important role in their recruitment to sites of inflammation. Using a poorly immunogenic mouse model of breast cancer, we found that irradiation increased the migration of CD8(+)CXCR6(+) activated T cells to tumors in vitro and in vivo. CXCR6-deficient mice showed reduced infiltration of tumors by activated CD8 T cells and impaired tumor regression following treatment with local IR to the tumor and Abs blocking the negative regulator of T cell activation, CTLA-4. These results provide the first evidence that IR can induce the secretion by cancer cells of proinflammatory chemotactic factors that recruit antitumor effector T cells. The ability of IR to convert tumors into "inflamed" peripheral tissues could be exploited to overcome obstacles at the effector phase of the antitumor immune response and improve the therapeutic efficacy of immunotherapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chemokines and cancer.

              The chemokines and their receptors are a superfamily of small secreted molecules that control the migration of many cell types in the body. Several years ago it became clear that some chemokines and receptors regulate the migration of certain cells in the lymphoid system, and this raised the possibility that chemokines could also control the migration of tumor cells in the body. Breast cancer cells were found to express chemokine receptors in a nonrandom manner, and these observations pointed to several chemokine/receptor pairs that control tumor-cell migration. The most important ligand/receptors pairs in these phenomena include CXCL12/CXCR4 and CCL21/CCR7. Since then, there has been intense interest in this area and many studies have been published, especially on CXCR4. These studies point to the following conclusions: (i) Tumors express chemokine receptors in a nonrandom manner. (ii) CXCR4 is the most widely expressed chemokine receptor in many different cancers. (iii) CCR7 is also expressed by many cancers, and is likely to mediate metastasis to the lymph nodes in selected cancers. (iv) The effects of CXCL12 on CXCR4-bearing tumor cells likely include many other functions (growth, differentiation) besides migration. During normal development, the interaction CXCL12/CXCR4 is known to be involved in organogenesis. This process shares many characteristics with metastasis, and represents one of the key areas of future research.
                Bookmark

                Author and article information

                Contributors
                mfraenk@med.uni-goettingen.de
                Journal
                Radiat Environ Biophys
                Radiation and Environmental Biophysics
                Springer-Verlag (Berlin/Heidelberg )
                0301-634X
                1432-2099
                18 November 2010
                18 November 2010
                March 2011
                : 50
                : 1
                : 145-154
                Affiliations
                [1 ]Department of Radiotherapy and Radiation Oncology, Universitätsmedizin Göttingen, Göttingen, Germany
                [2 ]Department of Pharmacology, Universitätsmedizin Göttingen, Göttingen, Germany
                [3 ]Department of Otorhinolaryngology-Head and Neck Surgery, Universitätsmedizin Göttingen, Göttingen, Germany
                [4 ]Department of Radiation Oncology, OncoRay-Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
                Article
                341
                10.1007/s00411-010-0341-x
                3040826
                21085979
                ea84d2cf-71ad-4bbc-bd70-498047527aa9
                © The Author(s) 2010
                History
                : 16 April 2010
                : 1 November 2010
                Categories
                Original Paper
                Custom metadata
                © Springer-Verlag 2011

                Biophysics
                Biophysics

                Comments

                Comment on this article