+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found

      Antisense to Transforming Growth Factor-β 1 Facilitates the Apoptosis of Macrophages in Rat Vein Grafts

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Background: The success of peripheral vein grafts is limited by intimal hyperplasia. Transforming growth factor (TGF)-β<sub>1</sub> has effects on cell proliferation, apoptosis and extracellular matrix synthesis. We have previously observed positive changes in vessel healing with antisense to TGF-β<sub>1</sub>. Methods: Adenovirus was used to transduce rat femoral artery vein grafts with antisense to TGF-β<sub>1</sub> (Ad-AST) or the sequence encoding the bioactive form of TGF-β<sub>1</sub> (Ad-BAT). Grafts were harvested at 1, 2, 4 and 12 weeks and formalin fixed for immunohistochemical studies of the cell markers proliferating cellular nuclear antigen (proliferation) and active caspase 3 (apoptosis). In situ DNA fragmentation assays were also performed to confirm active caspase 3 results. Results: Ad-AST treatment significantly (p = 0.05) increased apoptosis of macrophages inside the internal elastic lamina. In addition, Ad-AST treatment significantly increased the cellularity of the graft at early time points and reduced it at later time points (p = 0.01). Conclusion: The low levels of TGF-β<sub>1</sub> in Ad-AST treatment promote apoptosis of macrophages and provide an environment that is more conducive to the proliferation or infiltration of cells that contribute to healthy vessels.

          Related collections

          Most cited references 19

          • Record: found
          • Abstract: found
          • Article: not found

          Tissue repair, contraction, and the myofibroblast.

          After the first description of the myofibroblast in granulation tissue of an open wound by means of electron microscopy, as an intermediate cell between the fibroblast and the smooth muscle cell, the myofibroblast has been identified both in normal tissues, particularly in locations where there is a necessity of mechanical force development, and in pathological tissues, in relation with hypertrophic scarring, fibromatoses and fibrocontractive diseases as well as in the stroma reaction to epithelial tumors. It is now accepted that fibroblast/myofibroblast transition begins with the appearance of the protomyofibroblast, whose stress fibers contain only beta- and gamma-cytoplasmic actins and evolves, but not necessarily always, into the appearance of the differentiated myofibroblast, the most common variant of this cell, with stress fibers containing alpha-smooth muscle actin. Myofibroblast differentiation is a complex process, regulated by at least a cytokine (the transforming growth factor-beta1), an extracellular matrix component (the ED-A splice variant of cellular fibronectin), as well as the presence of mechanical tension. The myofibroblast is a key cell for the connective tissue remodeling that takes place during wound healing and fibrosis development. On this basis, the myofibroblast may represent a new important target for improving the evolution of such diseases as hypertrophic scars, and liver, kidney or pulmonary fibrosis.
            • Record: found
            • Abstract: found
            • Article: not found

            Caspase-3 is the primary activator of apoptotic DNA fragmentation via DNA fragmentation factor-45/inhibitor of caspase-activated DNase inactivation.

            Caspase-3 initiates apoptotic DNA fragmentation by proteolytically inactivating DFF45 (DNA fragmentation factor-45)/ICAD (inhibitor of caspase-activated DNase), which releases active DFF40/CAD (caspase-activated DNase), the inhibitor's associated endonuclease. Here, we examined whether other apoptotic proteinases initiated DNA fragmentation via DFF45/ICAD inactivation. In a cell-free assay, caspases-3, -6, -7, -8, and granzyme B initiated benzoyloxycarbonyl-Asp-Glu-Val-Asp (DEVD) cleaving caspase activity, DFF45/ICAD inactivation, and DNA fragmentation, but calpain and cathepsin D failed to initiate these events. Strikingly, only the DEVD cleaving caspases, caspase-3 and caspase-7, inactivated DFF45/ICAD and promoted DNA fragmentation in an in vitro DFF40/CAD assay, suggesting that granzyme B, caspase-6, and caspase-8 promote DFF45/ICAD inactivation and DNA fragmentation indirectly by activating caspase-3 and/or caspase-7. In vitro, however, caspase-3 inactivated DFF45/ICAD and promoted DNA fragmentation more effectively than caspase-7 and endogenous levels of caspase-7 failed to inactivate DFF45/ICAD in caspase-3 null MCF7 cells and extracts. Together, these data suggest that caspase-3 is the primary inactivator of DFF45/ICAD and therefore the primary activator of apoptotic DNA fragmentation.
              • Record: found
              • Abstract: found
              • Article: not found

              Cellular, molecular and immunological mechanisms in the pathophysiology of vein graft intimal hyperplasia.

              Coronary artery disease, leading to myocardial infarction and ischaemia, affects millions of persons and is one of the leading causes of morbidity and mortality worldwide. Invasive techniques such as coronary artery bypass grafting are used to alleviate the sequelae of arterial occlusion. Unfortunately, restenosis or occlusion of the grafted conduit occurs over a time frame of months to years with a gradual reduction in patency, especially in vein grafts. The events leading to intimal hyperplasia (IH) formation involve numerous cellular and molecular components. Various cellular elements of the vessel wall are involved as are leucocyte-endothelial interactions that trigger the coagulation cascade leading to localized thrombus formation. Subsequent phenotypic modification of the medial smooth muscle cells and their intimal migration is the basis of the lesion formation that is thought to be propagated by an immune-mediated reaction. Despite intense scrutiny, the pathophysiology of IH remains an enigma. Although several growth factors, cytokines and numerous other biomolecules have been implicated and their relationship to prohyperplasia pathways such as the phosphatidyl-inositol 3-kinase (PI3K)-Akt pathway has been established, many pieces of the puzzle are still missing. An in-depth understanding of early vein graft adaptation and progression is necessary to improve the long-term prognosis and develop more effective therapeutic measures. In this review, we have critically evaluated and summarized the literature to elucidate and interlink the numerous established and emerging factors that play a key role in the development of IH leading to vein graft restenosis.

                Author and article information

                J Vasc Res
                Journal of Vascular Research
                S. Karger AG
                August 2008
                20 March 2008
                : 45
                : 5
                : 365-374
                W.S. Middleton VA Hospital and the University of Wisconsin School of Medicine and Public Health, Madison, Wisc., USA
                121406 J Vasc Res 2008;45:365–374
                © 2008 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 3, Tables: 1, References: 31, Pages: 10
                Research Paper


                Comment on this article