27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A virus-encoded telomerase RNA promotes malignant T cell lymphomagenesis

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Telomerase is a ribonucleoprotein complex consisting of two essential core components: a reverse transcriptase and an RNA subunit (telomerase RNA [TR]). Dysregulation of telomerase has been associated with cell immortalization and oncogenesis. Marek's disease herpesvirus (MDV) induces a malignant T cell lymphoma in chickens and harbors in its genome two identical copies of a viral TR ( vTR) with 88% sequence identity to chicken TR. MDV mutants lacking both copies of vTR were significantly impaired in their ability to induce T cell lymphomas, although lytic replication in vivo was unaffected. Tumor incidences were reduced by >60% in chickens infected with vTR viruses compared with animals inoculated with MDV harboring at least one intact copy of vTR. Lymphomas in animals infected with the vTR viruses were also significantly smaller in size and less disseminated. Constitutive expression of vTR in the chicken fibroblast cell line DF-1 resulted in a phenotype consistent with transformation as indicated by morphological alteration, enhanced anchorage-independent cell growth, cell growth beyond saturation density, and increased expression levels of integrin αv. We concluded that vTR plays a critical role in MDV-induced T cell lymphomagenesis. Furthermore, our results provide the first description of tumor-promoting effects of TR in a natural virus–host infection model.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA.

          Recently, a highly efficient recombination system for chromosome engineering in Escherichia coli was described that uses a defective lambda prophage to supply functions that protect and recombine a linear DNA targeting cassette with its substrate sequence (Yu et al., 2000, Proc. Natl. Acad. Sci. USA 97, 5978-5983). Importantly, the recombination is proficient with DNA homologies as short as 30-50 bp, making it possible to use PCR-amplified fragments as the targeting cassette. Here, we adapt this prophage system for use in bacterial artificial chromosome (BAC) engineering by transferring it to DH10B cells, a BAC host strain. In addition, arabinose inducible cre and flpe genes are introduced into these cells to facilitate BAC modification using loxP and FRT sites. Next, we demonstrate the utility of this recombination system by using it to target cre to the 3' end of the mouse neuron-specific enolase (Eno2) gene carried on a 250-kb BAC, which made it possible to generate BAC transgenic mice that specifically express Cre in all mature neurons. In addition, we show that fragments as large as 80 kb can be subcloned from BACs by gap repair using this recombination system, obviating the need for restriction enzymes or DNA ligases. Finally, we show that BACs can be modified with this recombination system in the absence of drug selection. The ability to modify or subclone large fragments of genomic DNA with precision should facilitate many kinds of genomic experiments that were difficult or impossible to perform previously and aid in studies of gene function in the postgenomic era. Copyright 2001 Academic Press.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The RNA component of human telomerase.

            Eukaryotic chromosomes are capped with repetitive telomere sequences that protect the ends from damage and rearrangements. Telomere repeats are synthesized by telomerase, a ribonucleic acid (RNA)-protein complex. Here, the cloning of the RNA component of human telomerase, termed hTR, is described. The template region of hTR encompasses 11 nucleotides (5'-CUAACCCUAAC) complementary to the human telomere sequence (TTAGGG)n. Germline tissues and tumor cell lines expressed more hTR than normal somatic cells and tissues, which have no detectable telomerase activity. Human cell lines that expressed hTR mutated in the template region generated the predicted mutant telomerase activity. HeLa cells transfected with an antisense hTR lost telomeric DNA and began to die after 23 to 26 doublings. Thus, human telomerase is a critical enzyme for the long-term proliferation of immortal tumor cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The DF-1 chicken fibroblast cell line: transformation induced by diverse oncogenes and cell death resulting from infection by avian leukosis viruses.

              DF-1 is a continuous cell line of chicken embryo fibroblasts. The cells are free of endogenous sequences related to avian sarcoma and leukosis viruses and have normal fibroblastic morphology. DF-1 cells support the replication of avian retroviruses; diverse oncogenes induce foci of oncogenic transformation on monolayers of DF-1, and avian leukosis viruses of envelope subgroups B, D, and C induce cell death and form plaques. The new cell line will greatly facilitate studies on oncogenic transformation and cell killing by avian viruses. Copyright 1998 Academic Press.
                Bookmark

                Author and article information

                Journal
                J Exp Med
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                15 May 2006
                : 203
                : 5
                : 1307-1317
                Affiliations
                [1 ]Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853
                [2 ]Department of Animal and Food Science, University of Delaware, Newark, DE 19717
                [3 ]Institute for Animal Health, Compton, Berkshire RG20 7NN, UK
                Author notes

                CORRESPONDENCE Nikolaus Osterrieder: no34@ 123456cornell.edu .

                Article
                20052240
                10.1084/jem.20052240
                2121211
                16651385
                ea9d3ed7-8d8a-4ebf-bb76-cf02fb5e4718
                Copyright © 2006, The Rockefeller University Press
                History
                : 7 November 2005
                : 6 April 2006
                Categories
                Articles
                Article

                Medicine
                Medicine

                Comments

                Comment on this article