+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Oxidative-Antioxidant Imbalance and Impaired Glucose Metabolism in Schizophrenia

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Schizophrenia is a neurodevelopmental disorder featuring chronic, complex neuropsychiatric features. The etiology and pathogenesis of schizophrenia are not fully understood. Oxidative-antioxidant imbalance is a potential determinant of schizophrenia. Oxidative, nitrosative, or sulfuric damage to enzymes of glycolysis and tricarboxylic acid cycle, as well as calcium transport and ATP biosynthesis might cause impaired bioenergetics function in the brain. This could explain the initial symptoms, such as the first psychotic episode and mild cognitive impairment. Another concept of the etiopathogenesis of schizophrenia is associated with impaired glucose metabolism and insulin resistance with the activation of the mTOR mitochondrial pathway, which may contribute to impaired neuronal development. Consequently, cognitive processes requiring ATP are compromised and dysfunctions in synaptic transmission lead to neuronal death, preceding changes in key brain areas. This review summarizes the role and mutual interactions of oxidative damage and impaired glucose metabolism as key factors affecting metabolic complications in schizophrenia. These observations may be a premise for novel potential therapeutic targets that will delay not only the onset of first symptoms but also the progression of schizophrenia and its complications.

          Related collections

          Most cited references 270

          • Record: found
          • Abstract: found
          • Article: not found

          The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay.

          A simple, automated test measuring the ferric reducing ability of plasma, the FRAP assay, is presented as a novel method for assessing "antioxidant power." Ferric to ferrous ion reduction at low pH causes a colored ferrous-tripyridyltriazine complex to form. FRAP values are obtained by comparing the absorbance change at 593 nm in test reaction mixtures with those containing ferrous ions in known concentration. Absorbance changes are linear over a wide concentration range with antioxidant mixtures, including plasma, and with solutions containing one antioxidant in purified form. There is no apparent interaction between antioxidants. Measured stoichiometric factors of Trolox, alpha-tocopherol, ascorbic acid, and uric acid are all 2.0; that of bilirubin is 4.0. Activity of albumin is very low. Within- and between-run CVs are <1.0 and <3.0%, respectively, at 100-1000 micromol/liter. FRAP values of fresh plasma of healthy Chinese adults: 612-1634 micromol/liter (mean, 1017; SD, 206; n = 141). The FRAP assay is inexpensive, reagents are simple to prepare, results are highly reproducible, and the procedure is straightforward and speedy. The FRAP assay offers a putative index of antioxidant, or reducing, potential of biological fluids within the technological reach of every laboratory and researcher interested in oxidative stress and its effects.
            • Record: found
            • Abstract: not found
            • Article: not found

            Tissue sulfhydryl groups

             George Ellman (1959)
              • Record: found
              • Abstract: found
              • Article: not found

              A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation.

               Ozcan Erel (2004)
              To develop a novel colorimetric and automated direct measurement method for total antioxidant capacity (TAC). A new generation, more stable, colored 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid radical cation (ABTS(*+)) was employed. The ABTS(*+) is decolorized by antioxidants according to their concentrations and antioxidant capacities. This change in color is measured as a change in absorbance at 660 nm. This process is applied to an automated analyzer and the assay is calibrated with Trolox. The novel assay is linear up to 6 mmol Trolox equivalent/l, its precision values are lower than 3%, and there is no interference from hemoglobin, bilirubin, EDTA, or citrate. The method developed is significantly correlated with the Randox- total antioxidant status (TAS) assay (r = 0.897, P < 0.0001; n = 91) and with the ferric reducing ability of plasma (FRAP) assay (r = 0.863, P < 0.0001; n = 110). Serum TAC level was lower in patients with major depression (1.69 +/- 0.11 mmol Trolox equivalent/l) than in healthy subjects (1.75 +/- 0.08 mmol Trolox equivalent/l, P = 0.041). This easy, stable, reliable, sensitive, inexpensive, and fully automated method described can be used to measure total antioxidant capacity.

                Author and article information

                02 March 2020
                March 2020
                : 10
                : 3
                [1 ]Department of Radiology, Jagiellonian University Medical College, Kopernika 19, 31-501 Krakow, Poland; amira.bryll@ (A.B.); msjpopie@ (T.P.)
                [2 ]Department of Medical Diagnostics, Jagiellonian University, Medical College, Medyczna 9, 30-688 Krakow, Poland; justynaskrzypek96@ (J.S.); (M.S.)
                [3 ]Department of Child and Adolescent Psychiatry, Faculty of Medicine, Jagiellonian University, Medical College, Kopernika 21a, 31-501 Krakow, Poland; natalia.smierciak@
                [4 ]Department of Clinical Genomics, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA; kozicz.tamas@
                Author notes
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (



                Comment on this article