17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Unravelling the role of epigenetics in reproductive adaptations to early-life environment

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references163

          • Record: found
          • Abstract: found
          • Article: not found

          The link between childhood trauma and depression: insights from HPA axis studies in humans.

          Childhood trauma is a potent risk factor for developing depression in adulthood, particularly in response to additional stress. We here summarize results from a series of clinical studies suggesting that childhood trauma in humans is associated with sensitization of the neuroendocrine stress response, glucocorticoid resistance, increased central corticotropin-releasing factor (CRF) activity, immune activation, and reduced hippocampal volume, closely paralleling several of the neuroendocrine features of depression. Neuroendocrine changes secondary to early-life stress likely reflect risk to develop depression in response to stress, potentially due to failure of a connected neural circuitry implicated in emotional, neuroendocrine and autonomic control to compensate in response to challenge. However, not all of depression is related to childhood trauma and our results suggest the existence of biologically distinguishable subtypes of depression as a function of childhood trauma that are also responsive to differential treatment. Other risk factors, such as female gender and genetic dispositions, interfere with components of the stress response and further increase vulnerability for depression. Similar associations apply to a spectrum of other psychiatric and medical disorders that frequently coincide with depression and are aggravated by stress. Taken together, this line of evidence demonstrates that psychoneuroendocrine research may ultimately promote optimized clinical care and help prevent the adverse outcomes of childhood trauma.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Histone core modifications regulating nucleosome structure and dynamics.

            Post-translational modifications of histones regulate all DNA-templated processes, including replication, transcription and repair. These modifications function as platforms for the recruitment of specific effector proteins, such as transcriptional regulators or chromatin remodellers. Recent data suggest that histone modifications also have a direct effect on nucleosomal architecture. Acetylation, methylation, phosphorylation and citrullination of the histone core may influence chromatin structure by affecting histone-histone and histone-DNA interactions, as well as the binding of histones to chaperones.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              DNA methylation and healthy human aging

              Summary The process of aging results in a host of changes at the cellular and molecular levels, which include senescence, telomere shortening, and changes in gene expression. Epigenetic patterns also change over the lifespan, suggesting that epigenetic changes may constitute an important component of the aging process. The epigenetic mark that has been most highly studied is DNA methylation, the presence of methyl groups at CpG dinucleotides. These dinucleotides are often located near gene promoters and associate with gene expression levels. Early studies indicated that global levels of DNA methylation increase over the first few years of life and then decrease beginning in late adulthood. Recently, with the advent of microarray and next‐generation sequencing technologies, increases in variability of DNA methylation with age have been observed, and a number of site‐specific patterns have been identified. It has also been shown that certain CpG sites are highly associated with age, to the extent that prediction models using a small number of these sites can accurately predict the chronological age of the donor. Together, these observations point to the existence of two phenomena that both contribute to age‐related DNA methylation changes: epigenetic drift and the epigenetic clock. In this review, we focus on healthy human aging throughout the lifetime and discuss the dynamics of DNA methylation as well as how interactions between the genome, environment, and the epigenome influence aging rates. We also discuss the impact of determining ‘epigenetic age’ for human health and outline some important caveats to existing and future studies.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Endocrinology
                Nat Rev Endocrinol
                Springer Science and Business Media LLC
                1759-5029
                1759-5037
                July 3 2020
                Article
                10.1038/s41574-020-0370-8
                32620937
                eab6ae5c-2b20-4c0f-9dde-2b30b92825fd
                © 2020

                http://www.springer.com/tdm

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article