11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Syringe needle skull penetration reduces brain injuries and secondary inflammation following intracerebral neural stem cell transplantation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Intracerebral neural stem cell (NSC) transplantation is beneficial for delivering stem cell grafts effectively, however, this approach may subsequently result in brain injury and secondary inflammation. To reduce the risk of promoting brain injury and secondary inflammation, two methods were compared in the present study. Murine skulls were penetrated using a drill on the left side and a syringe needle on the right. Mice were randomly divided into three groups (n=84/group): Group A, receiving NSCs in the left hemisphere and PBS in the right; group B, receiving NSCs in the right hemisphere and PBS in the left; and group C, receiving equal NSCs in both hemispheres. Murine brains were stained for morphological analysis and subsequent evaluation of infiltrated immune cells. ELISA was performed to detect neurotrophic and immunomodulatory factors in the brain. The findings indicated that brain injury and secondary inflammation in the left hemisphere were more severe than those in the right hemisphere, following NSC transplantation. In contrast to the left hemisphere, more neurotrophic factors but less pro-inflammatory cytokines were detected in the right hemisphere. In addition, increased levels of neurotrophic factors and interleukin (IL)-10 were observed in the NSC transplantation side when compared with the PBS-treated hemispheres, although lower levels of IL-6 and tumor necrosis factor-α were detected. In conclusion, the present study indicated that syringe needle skull penetration vs. drill penetration is an improved method that reduces the risk of brain injury and secondary inflammation following intracerebral NSC transplantation. Furthermore, NSCs have the potential to modulate inflammation secondary to brain injuries.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: found
          • Article: not found

          Microglial and macrophage polarization—new prospects for brain repair.

          The traditional view of the adult brain as a static organ has changed in the past three decades, with the emergence of evidence that it remains plastic and has some regenerative capacity after injury. In the injured brain, microglia and macrophages clear cellular debris and orchestrate neuronal restorative processes. However, activation of these cells can also hinder CNS repair and expand tissue damage. Polarization of macrophage populations toward different phenotypes at different stages of injury might account for this dual role. This Perspectives article highlights the specific roles of polarized microglial and macrophage populations in CNS repair after acute injury, and argues that therapeutic approaches targeting cerebral inflammation should shift from broad suppression of microglia and macrophages towards subtle adjustment of the balance between their phenotypes. Breakthroughs in the identification of regulatory molecules that control these phenotypic shifts could ultimately accelerate research towards curing brain disorders.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Stem cells in human neurodegenerative disorders--time for clinical translation?

            Stem cell-based approaches have received much hype as potential treatments for neurodegenerative disorders. Indeed, transplantation of stem cells or their derivatives in animal models of neurodegenerative diseases can improve function by replacing the lost neurons and glial cells and by mediating remyelination, trophic actions, and modulation of inflammation. Endogenous neural stem cells are also potential therapeutic targets because they produce neurons and glial cells in response to injury and could be affected by the degenerative process. As we discuss here, however, significant hurdles remain before these findings can be responsibly translated to novel therapies. In particular, we need to better understand the mechanisms of action of stem cells after transplantation and learn how to control stem cell proliferation, survival, migration, and differentiation in the pathological environment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Human neural stem cells enhance structural plasticity and axonal transport in the ischaemic brain

              Stem cell transplantation promises new hope for the treatment of stroke although significant questions remain about how the grafted cells elicit their effects. One hypothesis is that transplanted stem cells enhance endogenous repair mechanisms activated after cerebral ischaemia. Recognizing that bilateral reorganization of surviving circuits is associated with recovery after stroke, we investigated the ability of transplanted human neural progenitor cells to enhance this structural plasticity. Our results show the first evidence that human neural progenitor cell treatment can significantly increase dendritic plasticity in both the ipsi- and contralesional cortex and this coincides with stem cell-induced functional recovery. Moreover, stem cell-grafted rats demonstrated increased corticocortical, corticostriatal, corticothalamic and corticospinal axonal rewiring from the contralesional side; with the transcallosal and corticospinal axonal sprouting correlating with functional recovery. Furthermore, we demonstrate that axonal transport, which is critical for both proper axonal function and axonal sprouting, is inhibited by stroke and that this is rescued by the stem cell treatment, thus identifying another novel potential mechanism of action of transplanted cells. Finally, we established in vitro co-culture assays in which these stem cells mimicked the effects observed in vivo. Through immunodepletion studies, we identified vascular endothelial growth factor, thrombospondins 1 and 2, and slit as mediators partially responsible for stem cell-induced effects on dendritic sprouting, axonal plasticity and axonal transport in vitro. Thus, we postulate that human neural progenitor cells aid recovery after stroke through secretion of factors that enhance brain repair and plasticity.
                Bookmark

                Author and article information

                Journal
                Exp Ther Med
                Exp Ther Med
                ETM
                Experimental and Therapeutic Medicine
                D.A. Spandidos
                1792-0981
                1792-1015
                March 2017
                17 January 2017
                17 January 2017
                : 13
                : 3
                : 885-890
                Affiliations
                [1 ]Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
                [2 ]Affiliated Bayi Brain Hospital, PLA Army General Hospital, Beijing 100700, P.R. China
                [3 ]Department of Neurology, Fu Xing Hospital, Capital Medical University, Beijing 100038, P.R. China
                Author notes
                Correspondence to: Dr Minhui Xu, Department of Neurosurgery, Daping Hospital, Third Military Medical University, 10 Changjiang Road, Yuzhong, Chongqing 400042, P.R. China, E-mail: dpmhxu@ 123456126.com
                Dr Ruxiang Xu, Affiliated Bayi Brain Hospital, PLA Army General Hospital, 5 Dongcheng, Beijing 100700, P.R. China, E-mail: jzprofxu@ 123456126.com
                [*]

                Contributed equally

                Article
                ETM-0-0-4054
                10.3892/etm.2017.4054
                5403566
                eac5735d-5142-41fd-b14f-326a159c4cde
                Copyright: © Gao et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 23 October 2015
                : 25 November 2016
                Categories
                Articles

                Medicine
                neural stem cell,transplantation,injury,inflammation,immune cell
                Medicine
                neural stem cell, transplantation, injury, inflammation, immune cell

                Comments

                Comment on this article